通过选取视差集使立体图像编码失真最小的方法改进块匹配算法

Aysha Kadaikar, G. Dauphin, Anissa Zergaïnoh-Mokraoui
{"title":"通过选取视差集使立体图像编码失真最小的方法改进块匹配算法","authors":"Aysha Kadaikar, G. Dauphin, Anissa Zergaïnoh-Mokraoui","doi":"10.1109/EUVIP.2016.7764593","DOIUrl":null,"url":null,"abstract":"This paper deals with the blockwise disparity map estimation problem for stereoscopic image coding. Generally, disparities are selected amongst a search area by minimizing a local distortion. In addition the larger the search area is, the more often a better disparity can be chosen and the lower the global distortion is. However, the resulting disparity map containing higher number of idfferent disparities is encoded with a larger bitrate. This paper proposes two approaches to take advantage of large search areas while reducing not only the bitrate of the estimated disparity map but also the computational complexity of the optimal solution. The developed sub-optimal algorithms rely on the initial set of disparities selected by the traditional Block-Matching Algorithm (BMA) to compute new sets minimizing the distortion of the predicted view under a bitrate constraint. Simulation results confirm the benefits of our algorithms compared to the BMA in terms of bitrate-distortion.","PeriodicalId":136980,"journal":{"name":"2016 6th European Workshop on Visual Information Processing (EUVIP)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving block-matching algorithm by selecting disparity sets minimizing distortion for stereoscopic image coding\",\"authors\":\"Aysha Kadaikar, G. Dauphin, Anissa Zergaïnoh-Mokraoui\",\"doi\":\"10.1109/EUVIP.2016.7764593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the blockwise disparity map estimation problem for stereoscopic image coding. Generally, disparities are selected amongst a search area by minimizing a local distortion. In addition the larger the search area is, the more often a better disparity can be chosen and the lower the global distortion is. However, the resulting disparity map containing higher number of idfferent disparities is encoded with a larger bitrate. This paper proposes two approaches to take advantage of large search areas while reducing not only the bitrate of the estimated disparity map but also the computational complexity of the optimal solution. The developed sub-optimal algorithms rely on the initial set of disparities selected by the traditional Block-Matching Algorithm (BMA) to compute new sets minimizing the distortion of the predicted view under a bitrate constraint. Simulation results confirm the benefits of our algorithms compared to the BMA in terms of bitrate-distortion.\",\"PeriodicalId\":136980,\"journal\":{\"name\":\"2016 6th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2016.7764593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2016.7764593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了立体图像编码中的块视差图估计问题。通常,通过最小化局部失真来选择搜索区域之间的差异。此外,搜索区域越大,往往可以选择较好的视差,全局失真越低。然而,所得到的视差图包含更多不同的视差,用更大的比特率编码。本文提出了两种利用大搜索区域的方法,既降低了视差图估计的比特率,又降低了最优解的计算复杂度。所开发的次优算法依靠传统块匹配算法(BMA)选择的初始差异集来计算新集,以在比特率约束下最小化预测视图的失真。仿真结果证实了与BMA相比,我们的算法在比特率失真方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving block-matching algorithm by selecting disparity sets minimizing distortion for stereoscopic image coding
This paper deals with the blockwise disparity map estimation problem for stereoscopic image coding. Generally, disparities are selected amongst a search area by minimizing a local distortion. In addition the larger the search area is, the more often a better disparity can be chosen and the lower the global distortion is. However, the resulting disparity map containing higher number of idfferent disparities is encoded with a larger bitrate. This paper proposes two approaches to take advantage of large search areas while reducing not only the bitrate of the estimated disparity map but also the computational complexity of the optimal solution. The developed sub-optimal algorithms rely on the initial set of disparities selected by the traditional Block-Matching Algorithm (BMA) to compute new sets minimizing the distortion of the predicted view under a bitrate constraint. Simulation results confirm the benefits of our algorithms compared to the BMA in terms of bitrate-distortion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信