基于改进二维经验模态分解方法的图像分析

Dan Zhang, Jianjia Pan, Y. Tang
{"title":"基于改进二维经验模态分解方法的图像分析","authors":"Dan Zhang, Jianjia Pan, Y. Tang","doi":"10.1109/ICWAPR.2010.5576310","DOIUrl":null,"url":null,"abstract":"The Empirical Mode Decomposition (EMD) is a new adaptive signal decomposition method, which is good at handling many real nonlinear and nonstationary one dimensional signals. It decomposes signals into a a series of Intrinsic Mode Functions (IMFs) that was shown having better behaved instantaneous frequencies via Hubert transform (The EMD and Hubert spectrum analysis together were called Hilbert-Huang Transform (HHT) which was proposed by N.E. Huang et al, in [5].). For the advanced applications in image analysis, the EMD was extended to the bidimensional EMD (BEMD). However, most of the existed BEMD algorithms are slow and have unsatisfied results. In this paper, we firstly proposed a new BEMD algorithm which is comparatively faster and better-performed. Then we use the Riesz transform to get the monogenic signals. The local features (amplitude, phase orientation, phase angle, etc) are evaluated. The simulation results are given in the experiments.","PeriodicalId":219884,"journal":{"name":"2010 International Conference on Wavelet Analysis and Pattern Recognition","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Image analysis based on an improved bidimensional empirical mode decomposition method\",\"authors\":\"Dan Zhang, Jianjia Pan, Y. Tang\",\"doi\":\"10.1109/ICWAPR.2010.5576310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Empirical Mode Decomposition (EMD) is a new adaptive signal decomposition method, which is good at handling many real nonlinear and nonstationary one dimensional signals. It decomposes signals into a a series of Intrinsic Mode Functions (IMFs) that was shown having better behaved instantaneous frequencies via Hubert transform (The EMD and Hubert spectrum analysis together were called Hilbert-Huang Transform (HHT) which was proposed by N.E. Huang et al, in [5].). For the advanced applications in image analysis, the EMD was extended to the bidimensional EMD (BEMD). However, most of the existed BEMD algorithms are slow and have unsatisfied results. In this paper, we firstly proposed a new BEMD algorithm which is comparatively faster and better-performed. Then we use the Riesz transform to get the monogenic signals. The local features (amplitude, phase orientation, phase angle, etc) are evaluated. The simulation results are given in the experiments.\",\"PeriodicalId\":219884,\"journal\":{\"name\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2010.5576310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2010.5576310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

经验模态分解(EMD)是一种新的自适应信号分解方法,它能很好地处理许多实际的非线性和非平稳一维信号。它将信号分解成一系列的本禀模态函数(IMFs),这些函数通过Hubert变换表现出更好的瞬时频率(EMD和Hubert频谱分析一起被称为Hilbert-Huang变换(HHT),由N.E. Huang等人在[5]中提出)。为了在图像分析中的高级应用,EMD扩展到二维EMD (BEMD)。然而,现有的BEMD算法大多速度慢,效果不理想。本文首先提出了一种速度更快、性能更好的BEMD算法。然后用Riesz变换得到单基因信号。评估了局部特征(振幅、相位方向、相位角等)。在实验中给出了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image analysis based on an improved bidimensional empirical mode decomposition method
The Empirical Mode Decomposition (EMD) is a new adaptive signal decomposition method, which is good at handling many real nonlinear and nonstationary one dimensional signals. It decomposes signals into a a series of Intrinsic Mode Functions (IMFs) that was shown having better behaved instantaneous frequencies via Hubert transform (The EMD and Hubert spectrum analysis together were called Hilbert-Huang Transform (HHT) which was proposed by N.E. Huang et al, in [5].). For the advanced applications in image analysis, the EMD was extended to the bidimensional EMD (BEMD). However, most of the existed BEMD algorithms are slow and have unsatisfied results. In this paper, we firstly proposed a new BEMD algorithm which is comparatively faster and better-performed. Then we use the Riesz transform to get the monogenic signals. The local features (amplitude, phase orientation, phase angle, etc) are evaluated. The simulation results are given in the experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信