{"title":"横向和纵向双悬臂动力减振器的性能研究","authors":"S. Adewusi","doi":"10.13189/ujme.2020.080504","DOIUrl":null,"url":null,"abstract":"This paper presents the vibration attenuation performance of a double-cantilever dynamic vibration absorber (DCDVA) attached to a simply-supported beam in two different orientations using theoretical and experimental methods. The results showed that the longitudinal configuration of the DCDVA yield better vibration attenuation by absorbing 80% more vibration than the transverse configuration. For the experimental results, the orientation of the DCDVA has very little effect on the resonant frequencies of the combined DCDVA and simply-supported beam system. However the damping of the second resonant frequency is higher for the transverse configuration. The lumped-mass model characterized the frequency response functions of the DCDVA oriented in the transverse direction only, the model could not reproduce the experimental response for the longitudinal orientation of the DCDVA.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of a Double-cantilever Dynamic Vibration Absorber (DCDVA) Oriented in Transverse and Longitudinal Directions\",\"authors\":\"S. Adewusi\",\"doi\":\"10.13189/ujme.2020.080504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the vibration attenuation performance of a double-cantilever dynamic vibration absorber (DCDVA) attached to a simply-supported beam in two different orientations using theoretical and experimental methods. The results showed that the longitudinal configuration of the DCDVA yield better vibration attenuation by absorbing 80% more vibration than the transverse configuration. For the experimental results, the orientation of the DCDVA has very little effect on the resonant frequencies of the combined DCDVA and simply-supported beam system. However the damping of the second resonant frequency is higher for the transverse configuration. The lumped-mass model characterized the frequency response functions of the DCDVA oriented in the transverse direction only, the model could not reproduce the experimental response for the longitudinal orientation of the DCDVA.\",\"PeriodicalId\":275027,\"journal\":{\"name\":\"Universal Journal of Mechanical Engineering\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/ujme.2020.080504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/ujme.2020.080504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance of a Double-cantilever Dynamic Vibration Absorber (DCDVA) Oriented in Transverse and Longitudinal Directions
This paper presents the vibration attenuation performance of a double-cantilever dynamic vibration absorber (DCDVA) attached to a simply-supported beam in two different orientations using theoretical and experimental methods. The results showed that the longitudinal configuration of the DCDVA yield better vibration attenuation by absorbing 80% more vibration than the transverse configuration. For the experimental results, the orientation of the DCDVA has very little effect on the resonant frequencies of the combined DCDVA and simply-supported beam system. However the damping of the second resonant frequency is higher for the transverse configuration. The lumped-mass model characterized the frequency response functions of the DCDVA oriented in the transverse direction only, the model could not reproduce the experimental response for the longitudinal orientation of the DCDVA.