基于帧的子带卡尔曼滤波语音增强

Wen-Rong Wu, Po-Chen Chen, Hwai-Tsu Chang, Chun-Hung Kuo
{"title":"基于帧的子带卡尔曼滤波语音增强","authors":"Wen-Rong Wu, Po-Chen Chen, Hwai-Tsu Chang, Chun-Hung Kuo","doi":"10.1109/ICOSP.1998.770303","DOIUrl":null,"url":null,"abstract":"Kalman filtering is an effective speech enhancement technique, in which speech and noise signals are usually modeled as autoregressive (AR) processes and represented in the state-space domain. Since AR coefficient identification and Kalman filtering require extensive computations, practical implementation of this approach is difficult. This paper proposes a simple and practical scheme that overcomes these problems. Speech signals are first decomposed into subbands. Subband speech signals are then modeled as low-order AR processes, such that low-order Kalman filters can be applied. Enhanced fullband speech signals are finally obtained by combining the enhanced subband speech signals. Using a frame-based algorithm, autocorrelation functions of subband speech are calculated and the Yuler-Walker equations are solved to obtain the AR parameters. Simulation results show that Kalman filtering in the subband domain not only greatly reduces the computational complexity, but also achieves better performance compared to that in the fullband domain.","PeriodicalId":145700,"journal":{"name":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Frame-based subband Kalman filtering for speech enhancement\",\"authors\":\"Wen-Rong Wu, Po-Chen Chen, Hwai-Tsu Chang, Chun-Hung Kuo\",\"doi\":\"10.1109/ICOSP.1998.770303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kalman filtering is an effective speech enhancement technique, in which speech and noise signals are usually modeled as autoregressive (AR) processes and represented in the state-space domain. Since AR coefficient identification and Kalman filtering require extensive computations, practical implementation of this approach is difficult. This paper proposes a simple and practical scheme that overcomes these problems. Speech signals are first decomposed into subbands. Subband speech signals are then modeled as low-order AR processes, such that low-order Kalman filters can be applied. Enhanced fullband speech signals are finally obtained by combining the enhanced subband speech signals. Using a frame-based algorithm, autocorrelation functions of subband speech are calculated and the Yuler-Walker equations are solved to obtain the AR parameters. Simulation results show that Kalman filtering in the subband domain not only greatly reduces the computational complexity, but also achieves better performance compared to that in the fullband domain.\",\"PeriodicalId\":145700,\"journal\":{\"name\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.1998.770303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.1998.770303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

卡尔曼滤波是一种有效的语音增强技术,该技术通常将语音和噪声信号建模为自回归(AR)过程,并在状态空间域中表示。由于AR系数辨识和卡尔曼滤波需要大量的计算量,因此该方法的实际实现比较困难。本文提出了一种简单实用的方案来克服这些问题。语音信号首先被分解成子带。然后将子带语音信号建模为低阶AR过程,从而可以应用低阶卡尔曼滤波器。最后将增强的子带语音信号组合得到增强的全带语音信号。采用基于帧的算法,计算子带语音的自相关函数,求解Yuler-Walker方程,得到AR参数。仿真结果表明,子带域的卡尔曼滤波不仅大大降低了计算复杂度,而且比全带域的卡尔曼滤波具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frame-based subband Kalman filtering for speech enhancement
Kalman filtering is an effective speech enhancement technique, in which speech and noise signals are usually modeled as autoregressive (AR) processes and represented in the state-space domain. Since AR coefficient identification and Kalman filtering require extensive computations, practical implementation of this approach is difficult. This paper proposes a simple and practical scheme that overcomes these problems. Speech signals are first decomposed into subbands. Subband speech signals are then modeled as low-order AR processes, such that low-order Kalman filters can be applied. Enhanced fullband speech signals are finally obtained by combining the enhanced subband speech signals. Using a frame-based algorithm, autocorrelation functions of subband speech are calculated and the Yuler-Walker equations are solved to obtain the AR parameters. Simulation results show that Kalman filtering in the subband domain not only greatly reduces the computational complexity, but also achieves better performance compared to that in the fullband domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信