初等双线性时间序列的平稳性

Lukasz Malinski, J. Figwer
{"title":"初等双线性时间序列的平稳性","authors":"Lukasz Malinski, J. Figwer","doi":"10.1109/MMAR.2011.6031336","DOIUrl":null,"url":null,"abstract":"In the paper stationarity of random processes obtained from elementary bilinear time-series models is analysed. It is shown in the presented analysis that elementary bilinear time-series models can be interpreted as linear time-series with time varying random parameters. The analysis is illustrated by simulation experiments showing time dependencies of some statistical moments of the discussed random processes.","PeriodicalId":440376,"journal":{"name":"2011 16th International Conference on Methods & Models in Automation & Robotics","volume":"266 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On stationarity of elementary bilinear time-series\",\"authors\":\"Lukasz Malinski, J. Figwer\",\"doi\":\"10.1109/MMAR.2011.6031336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper stationarity of random processes obtained from elementary bilinear time-series models is analysed. It is shown in the presented analysis that elementary bilinear time-series models can be interpreted as linear time-series with time varying random parameters. The analysis is illustrated by simulation experiments showing time dependencies of some statistical moments of the discussed random processes.\",\"PeriodicalId\":440376,\"journal\":{\"name\":\"2011 16th International Conference on Methods & Models in Automation & Robotics\",\"volume\":\"266 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 16th International Conference on Methods & Models in Automation & Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR.2011.6031336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 16th International Conference on Methods & Models in Automation & Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2011.6031336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文分析了由初等双线性时间序列模型得到的随机过程的平稳性。分析表明,初等双线性时间序列模型可以解释为具有时变随机参数的线性时间序列。仿真实验显示了所讨论的随机过程的一些统计矩的时间依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On stationarity of elementary bilinear time-series
In the paper stationarity of random processes obtained from elementary bilinear time-series models is analysed. It is shown in the presented analysis that elementary bilinear time-series models can be interpreted as linear time-series with time varying random parameters. The analysis is illustrated by simulation experiments showing time dependencies of some statistical moments of the discussed random processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信