自相关矩阵二阶估计的递归逆自适应滤波器

Mohammad Shukri Ahmad, Ösman Kükrer, A. Hocanin
{"title":"自相关矩阵二阶估计的递归逆自适应滤波器","authors":"Mohammad Shukri Ahmad, Ösman Kükrer, A. Hocanin","doi":"10.1109/ISSPIT.2010.5711771","DOIUrl":null,"url":null,"abstract":"The recently proposed Recursive Inverse (RI) Adaptive Filtering algorithm uses a variable step-size and the first order recursive estimation of the correlation matrices in the coefficient update equation which lead to an improved performance. In this paper, a new FIR adaptive filtering algorithm is introduced. This algorithm uses the second order recursive estimation of the correlation matrices in the coefficient update equation which leads to an improved performance over the RI algorithm. The simulation results show that the algorithm outperforms the Transform Domain LMS with Variable Step-Size (TDVSS), the RI and the RLS algorithms in stationary environments. The performance of the algorithms is tested in Additive White Gaussian Noise (AWGN) and Correlated Noise environments.","PeriodicalId":308189,"journal":{"name":"The 10th IEEE International Symposium on Signal Processing and Information Technology","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Recursive inverse adaptive filter with second order estimation of autocorrelation matrix\",\"authors\":\"Mohammad Shukri Ahmad, Ösman Kükrer, A. Hocanin\",\"doi\":\"10.1109/ISSPIT.2010.5711771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recently proposed Recursive Inverse (RI) Adaptive Filtering algorithm uses a variable step-size and the first order recursive estimation of the correlation matrices in the coefficient update equation which lead to an improved performance. In this paper, a new FIR adaptive filtering algorithm is introduced. This algorithm uses the second order recursive estimation of the correlation matrices in the coefficient update equation which leads to an improved performance over the RI algorithm. The simulation results show that the algorithm outperforms the Transform Domain LMS with Variable Step-Size (TDVSS), the RI and the RLS algorithms in stationary environments. The performance of the algorithms is tested in Additive White Gaussian Noise (AWGN) and Correlated Noise environments.\",\"PeriodicalId\":308189,\"journal\":{\"name\":\"The 10th IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 10th IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2010.5711771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 10th IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2010.5711771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

最近提出的递推逆(RI)自适应滤波算法采用变步长和系数更新方程中相关矩阵的一阶递推估计,从而提高了性能。本文提出了一种新的FIR自适应滤波算法。该算法使用系数更新方程中相关矩阵的二阶递归估计,从而提高了RI算法的性能。仿真结果表明,该算法在静态环境下优于变步长变换域LMS (TDVSS)、RI和RLS算法。在加性高斯白噪声(AWGN)和相关噪声环境下测试了算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive inverse adaptive filter with second order estimation of autocorrelation matrix
The recently proposed Recursive Inverse (RI) Adaptive Filtering algorithm uses a variable step-size and the first order recursive estimation of the correlation matrices in the coefficient update equation which lead to an improved performance. In this paper, a new FIR adaptive filtering algorithm is introduced. This algorithm uses the second order recursive estimation of the correlation matrices in the coefficient update equation which leads to an improved performance over the RI algorithm. The simulation results show that the algorithm outperforms the Transform Domain LMS with Variable Step-Size (TDVSS), the RI and the RLS algorithms in stationary environments. The performance of the algorithms is tested in Additive White Gaussian Noise (AWGN) and Correlated Noise environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信