基于结构量化的本体近似匹配

Shuai Liang, Qiang-Yi Luo, Zhenhong Huang
{"title":"基于结构量化的本体近似匹配","authors":"Shuai Liang, Qiang-Yi Luo, Zhenhong Huang","doi":"10.1109/SKG.2010.28","DOIUrl":null,"url":null,"abstract":"There is much implicit semantic information hidden in ontology structure, which hasn’t been used in ontology matching. In this paper, we analyse the network characteristics of ontology. Propose a set of semantic and theoretical criterions to measure the different characteristics of nodes and edges. Use these quantitative characteristics to identify core concept nodes and assign weight to edges. Then, convert the ontology matching to Labelled Weighted Graph Matching problem, and use convex relaxation algorithm to solve this quadratic programming problem. We implement our prototype and experimentally evaluate our approach on data sets. The evaluation results demonstrate that structure information significant effect matching result and our approach can achieve good precision and recall.","PeriodicalId":105513,"journal":{"name":"2010 Sixth International Conference on Semantics, Knowledge and Grids","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate Ontology Matching Based on Structure Quantization\",\"authors\":\"Shuai Liang, Qiang-Yi Luo, Zhenhong Huang\",\"doi\":\"10.1109/SKG.2010.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is much implicit semantic information hidden in ontology structure, which hasn’t been used in ontology matching. In this paper, we analyse the network characteristics of ontology. Propose a set of semantic and theoretical criterions to measure the different characteristics of nodes and edges. Use these quantitative characteristics to identify core concept nodes and assign weight to edges. Then, convert the ontology matching to Labelled Weighted Graph Matching problem, and use convex relaxation algorithm to solve this quadratic programming problem. We implement our prototype and experimentally evaluate our approach on data sets. The evaluation results demonstrate that structure information significant effect matching result and our approach can achieve good precision and recall.\",\"PeriodicalId\":105513,\"journal\":{\"name\":\"2010 Sixth International Conference on Semantics, Knowledge and Grids\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Sixth International Conference on Semantics, Knowledge and Grids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SKG.2010.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Sixth International Conference on Semantics, Knowledge and Grids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKG.2010.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本体结构中隐藏着许多隐含的语义信息,这些信息尚未被用于本体匹配。本文分析了本体的网络特性。提出了一套语义和理论标准来衡量节点和边缘的不同特征。使用这些定量特征来识别核心概念节点并为边缘分配权重。然后,将本体匹配问题转化为标记加权图匹配问题,并利用凸松弛算法求解该二次规划问题。我们实现了我们的原型,并在数据集上实验评估了我们的方法。评价结果表明,结构信息对匹配结果的影响显著,该方法能达到较好的查准率和查全率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Ontology Matching Based on Structure Quantization
There is much implicit semantic information hidden in ontology structure, which hasn’t been used in ontology matching. In this paper, we analyse the network characteristics of ontology. Propose a set of semantic and theoretical criterions to measure the different characteristics of nodes and edges. Use these quantitative characteristics to identify core concept nodes and assign weight to edges. Then, convert the ontology matching to Labelled Weighted Graph Matching problem, and use convex relaxation algorithm to solve this quadratic programming problem. We implement our prototype and experimentally evaluate our approach on data sets. The evaluation results demonstrate that structure information significant effect matching result and our approach can achieve good precision and recall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信