使用备用发电,以减低半小时计电客户的输电网收费

C. Mullen, P. Taylor, V. Thornley, N. Wade
{"title":"使用备用发电,以减低半小时计电客户的输电网收费","authors":"C. Mullen, P. Taylor, V. Thornley, N. Wade","doi":"10.1109/UPEC.2014.6934695","DOIUrl":null,"url":null,"abstract":"Electricity customers on the GB network pay transmission network use of service (TNUoS) charges. For half-hourly metered (HHM) customers there are “Triad” demand charges which apply to three half-hour periods per year. The periods represent peak system demand and are not known in advance. These (HHM) customers can reduce their Triad charge by minimizing their demand during periods which have a high likelihood of being a Triad. Suppliers and energy service companies can provide warnings of these periods. Many commercial customers have on-site emergency generators to ensure the continuity of critical supplies in case of a supply failure which could be engaged to reduce Triad demand. This paper describes a model of the costs of transmission charges (Triad), distribution network use-of-service charges (DUoS) and energy charges for half-hourly (HH) metered customers. It models the effect of using a standby generator for reducing these costs and calculates the fuel cost and the quantity of CO2 emissions. The model is applied a case study of a building at Newcastle University in which the use of standby generation for Triad avoidance is compared against the existing costs. The cost of diesel fuel consumption is also considered so that the net benefit of using standby generation for Triad avoidance can be determined.","PeriodicalId":414838,"journal":{"name":"2014 49th International Universities Power Engineering Conference (UPEC)","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Use of standby generation for reduction of transmission network charges for half-hourly metered customers\",\"authors\":\"C. Mullen, P. Taylor, V. Thornley, N. Wade\",\"doi\":\"10.1109/UPEC.2014.6934695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electricity customers on the GB network pay transmission network use of service (TNUoS) charges. For half-hourly metered (HHM) customers there are “Triad” demand charges which apply to three half-hour periods per year. The periods represent peak system demand and are not known in advance. These (HHM) customers can reduce their Triad charge by minimizing their demand during periods which have a high likelihood of being a Triad. Suppliers and energy service companies can provide warnings of these periods. Many commercial customers have on-site emergency generators to ensure the continuity of critical supplies in case of a supply failure which could be engaged to reduce Triad demand. This paper describes a model of the costs of transmission charges (Triad), distribution network use-of-service charges (DUoS) and energy charges for half-hourly (HH) metered customers. It models the effect of using a standby generator for reducing these costs and calculates the fuel cost and the quantity of CO2 emissions. The model is applied a case study of a building at Newcastle University in which the use of standby generation for Triad avoidance is compared against the existing costs. The cost of diesel fuel consumption is also considered so that the net benefit of using standby generation for Triad avoidance can be determined.\",\"PeriodicalId\":414838,\"journal\":{\"name\":\"2014 49th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"217 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 49th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2014.6934695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 49th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2014.6934695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

电力客户在GB网络上支付传输网络使用服务(TNUoS)费用。以半小时计的客户,每年有三个半小时的时段收取“三合一”收费。这些时间段代表了系统需求的峰值,是无法提前知道的。这些(HHM)客户可以通过最小化他们在极有可能成为Triad的时期的需求来降低他们的Triad费用。供应商和能源服务公司可以提供这些时期的警告。许多商业客户设有现场应急发电机,以确保在供应中断的情况下关键供应的连续性,从而减少三合一需求。本文描述了输电费用(Triad)、配电网络服务使用费用(DUoS)和半小时(HH)计量用户能源费用的成本模型。它模拟了使用备用发电机降低这些成本的效果,并计算了燃料成本和二氧化碳排放量。该模型应用于纽卡斯尔大学一栋建筑的案例研究,其中使用备用发电来避免三位一体与现有成本进行比较。柴油燃料消耗的成本也被考虑在内,这样就可以确定使用备用发电的净效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of standby generation for reduction of transmission network charges for half-hourly metered customers
Electricity customers on the GB network pay transmission network use of service (TNUoS) charges. For half-hourly metered (HHM) customers there are “Triad” demand charges which apply to three half-hour periods per year. The periods represent peak system demand and are not known in advance. These (HHM) customers can reduce their Triad charge by minimizing their demand during periods which have a high likelihood of being a Triad. Suppliers and energy service companies can provide warnings of these periods. Many commercial customers have on-site emergency generators to ensure the continuity of critical supplies in case of a supply failure which could be engaged to reduce Triad demand. This paper describes a model of the costs of transmission charges (Triad), distribution network use-of-service charges (DUoS) and energy charges for half-hourly (HH) metered customers. It models the effect of using a standby generator for reducing these costs and calculates the fuel cost and the quantity of CO2 emissions. The model is applied a case study of a building at Newcastle University in which the use of standby generation for Triad avoidance is compared against the existing costs. The cost of diesel fuel consumption is also considered so that the net benefit of using standby generation for Triad avoidance can be determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信