折叠匹配:准确和高保真服装合身到3D扫描

Sk Aziz Ali, Sikang Yan, W. Dornisch, D. Stricker
{"title":"折叠匹配:准确和高保真服装合身到3D扫描","authors":"Sk Aziz Ali, Sikang Yan, W. Dornisch, D. Stricker","doi":"10.1109/ICIP40778.2020.9190730","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new template fitting method that can capture fine details of garments in target 3D scans of dressed human bodies. Matching the high fidelity details of such loose/tight-fit garments is a challenging task as they express intricate folds, creases, wrinkle patterns, and other high fidelity surface details. Our proposed method of non-rigid shape fitting – FoldMatch – uses physics-based particle dynamics to explicitly model the deformation of loose-fit garments and wrinkle vector fields for capturing clothing details. The 3D scan point cloud behaves as a collection of astrophysical particles, which attracts the points in template mesh and defines the template motion model. We use this point-based motion model to derive regularized deformation gradients for the template mesh. We show the parameterization of the wrinkle vector fields helps in the accurate shape fitting. Our method shows better performance than the stateof-the-art methods. We define several deformation and shape matching quality measurement metrics to evaluate FoldMatch on synthetic and real data sets.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Foldmatch: Accurate and High Fidelity Garment Fitting Onto 3D Scans\",\"authors\":\"Sk Aziz Ali, Sikang Yan, W. Dornisch, D. Stricker\",\"doi\":\"10.1109/ICIP40778.2020.9190730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new template fitting method that can capture fine details of garments in target 3D scans of dressed human bodies. Matching the high fidelity details of such loose/tight-fit garments is a challenging task as they express intricate folds, creases, wrinkle patterns, and other high fidelity surface details. Our proposed method of non-rigid shape fitting – FoldMatch – uses physics-based particle dynamics to explicitly model the deformation of loose-fit garments and wrinkle vector fields for capturing clothing details. The 3D scan point cloud behaves as a collection of astrophysical particles, which attracts the points in template mesh and defines the template motion model. We use this point-based motion model to derive regularized deformation gradients for the template mesh. We show the parameterization of the wrinkle vector fields helps in the accurate shape fitting. Our method shows better performance than the stateof-the-art methods. We define several deformation and shape matching quality measurement metrics to evaluate FoldMatch on synthetic and real data sets.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9190730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一种新的模板拟合方法,可以在穿着人体的目标三维扫描中捕获服装的精细细节。匹配这种宽松/紧身服装的高保真细节是一项具有挑战性的任务,因为它们表达了复杂的褶皱、折痕、褶皱图案和其他高保真表面细节。我们提出的非刚性形状拟合方法- FoldMatch -使用基于物理的粒子动力学来明确建模宽松服装的变形和褶皱矢量场,以捕获服装细节。三维扫描点云表现为天体物理粒子的集合,它吸引模板网格中的点并定义模板的运动模型。我们使用这个基于点的运动模型来导出模板网格的正则化变形梯度。我们证明了褶皱向量场的参数化有助于精确的形状拟合。我们的方法比最先进的方法表现出更好的性能。我们定义了几个变形和形状匹配质量测量指标来评估合成和真实数据集上的FoldMatch。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Foldmatch: Accurate and High Fidelity Garment Fitting Onto 3D Scans
In this paper, we propose a new template fitting method that can capture fine details of garments in target 3D scans of dressed human bodies. Matching the high fidelity details of such loose/tight-fit garments is a challenging task as they express intricate folds, creases, wrinkle patterns, and other high fidelity surface details. Our proposed method of non-rigid shape fitting – FoldMatch – uses physics-based particle dynamics to explicitly model the deformation of loose-fit garments and wrinkle vector fields for capturing clothing details. The 3D scan point cloud behaves as a collection of astrophysical particles, which attracts the points in template mesh and defines the template motion model. We use this point-based motion model to derive regularized deformation gradients for the template mesh. We show the parameterization of the wrinkle vector fields helps in the accurate shape fitting. Our method shows better performance than the stateof-the-art methods. We define several deformation and shape matching quality measurement metrics to evaluate FoldMatch on synthetic and real data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信