Ismael Molina-Moreno, A. Medina, R. Cisneros-Magaña, O. Anaya‐Lara
{"title":"时域谐波与暂态评估","authors":"Ismael Molina-Moreno, A. Medina, R. Cisneros-Magaña, O. Anaya‐Lara","doi":"10.1109/ROPEC.2016.7830622","DOIUrl":null,"url":null,"abstract":"Power quality simulation is required to provide an evaluation of the adverse phenomena such as transients, harmonics, and voltage sags in a power system, among others. This paper details a methodology to assess adverse power quality effects. In this methodology, the power system is modeled in the continuous-time by an ordinary differential equations set. The equations set are solved through a numerical integration procedure. The methodology is applied to the modified New Zealand test power system including linear and nonlinear loads. The results are validated through a direct comparison of the state response against the actual response obtained from the time-domain power system simulation performed using the SimPowerSystems toolbox of Simulink®. The obtained results indicate that the methodology accurately estimates power quality harmonic and transient state, respectively.","PeriodicalId":166098,"journal":{"name":"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Harmonic and transient state assessment in the time-domain\",\"authors\":\"Ismael Molina-Moreno, A. Medina, R. Cisneros-Magaña, O. Anaya‐Lara\",\"doi\":\"10.1109/ROPEC.2016.7830622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power quality simulation is required to provide an evaluation of the adverse phenomena such as transients, harmonics, and voltage sags in a power system, among others. This paper details a methodology to assess adverse power quality effects. In this methodology, the power system is modeled in the continuous-time by an ordinary differential equations set. The equations set are solved through a numerical integration procedure. The methodology is applied to the modified New Zealand test power system including linear and nonlinear loads. The results are validated through a direct comparison of the state response against the actual response obtained from the time-domain power system simulation performed using the SimPowerSystems toolbox of Simulink®. The obtained results indicate that the methodology accurately estimates power quality harmonic and transient state, respectively.\",\"PeriodicalId\":166098,\"journal\":{\"name\":\"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROPEC.2016.7830622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC.2016.7830622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Harmonic and transient state assessment in the time-domain
Power quality simulation is required to provide an evaluation of the adverse phenomena such as transients, harmonics, and voltage sags in a power system, among others. This paper details a methodology to assess adverse power quality effects. In this methodology, the power system is modeled in the continuous-time by an ordinary differential equations set. The equations set are solved through a numerical integration procedure. The methodology is applied to the modified New Zealand test power system including linear and nonlinear loads. The results are validated through a direct comparison of the state response against the actual response obtained from the time-domain power system simulation performed using the SimPowerSystems toolbox of Simulink®. The obtained results indicate that the methodology accurately estimates power quality harmonic and transient state, respectively.