{"title":"降阶乘的广义斐波那契数的二项式和与交替二项式和","authors":"S. Koparal, N. Ömür","doi":"10.36753/mathenot.708004","DOIUrl":null,"url":null,"abstract":"In this paper, we consider and obtain binomial sums and alternating binomial sums including falling factorial of the summation indice. For example, For integers n and m such that 0 ≤ m < n , n (cid:88) and for positive odd integer m,","PeriodicalId":127589,"journal":{"name":"Mathematical Sciences and Applications E-Notes","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On binomial sums and alternating binomial sums of generelized Fibonacci numbers with falling factorials\",\"authors\":\"S. Koparal, N. Ömür\",\"doi\":\"10.36753/mathenot.708004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider and obtain binomial sums and alternating binomial sums including falling factorial of the summation indice. For example, For integers n and m such that 0 ≤ m < n , n (cid:88) and for positive odd integer m,\",\"PeriodicalId\":127589,\"journal\":{\"name\":\"Mathematical Sciences and Applications E-Notes\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Sciences and Applications E-Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36753/mathenot.708004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Sciences and Applications E-Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36753/mathenot.708004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文考虑并得到了二项式和和和指数降阶乘的交替二项式和。例如,对于满足0≤m < n, n (cid:88)的整数n和m,对于正奇数m,
On binomial sums and alternating binomial sums of generelized Fibonacci numbers with falling factorials
In this paper, we consider and obtain binomial sums and alternating binomial sums including falling factorial of the summation indice. For example, For integers n and m such that 0 ≤ m < n , n (cid:88) and for positive odd integer m,