{"title":"基于mel -频倒谱系数特征提取和反向传播神经网络的婴儿哭声声音分类","authors":"Yesy Diah Rosita, Hartarto Junaedi","doi":"10.1109/ICSTC.2016.7877367","DOIUrl":null,"url":null,"abstract":"Crying is a communication method used by infants given the limitations of language. Parents or nannies who have never had the experience to take care of the baby will experience anxiety when the infant is crying. Therefore, we need a way to understand about infant's cry and apply the formula. This research develops a system to classify the infant's cry sound using MACF (Mel-Frequency Cepstrum Coefficients) feature extraction and BNN (Backpropagation Neural Network) based on voice type. It is classified into 3 classes: hungry, discomfort, and tired. A voice input must be ascertained as infant's cry sound which using 3 features extraction (pitch with 2 approaches: Modified Autocorrelation Function and Cepstrum Pitch Determination, Energy, and Harmonic Ratio). The features coefficients of MFCC are furthermore classified by Backpropagation Neural Network. The experiment shows that the system can classify the infant's cry sound quite well, with 30 coefficients and 10 neurons in the hidden layer.","PeriodicalId":228650,"journal":{"name":"2016 2nd International Conference on Science and Technology-Computer (ICST)","volume":"23 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Infant's cry sound classification using Mel-Frequency Cepstrum Coefficients feature extraction and Backpropagation Neural Network\",\"authors\":\"Yesy Diah Rosita, Hartarto Junaedi\",\"doi\":\"10.1109/ICSTC.2016.7877367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crying is a communication method used by infants given the limitations of language. Parents or nannies who have never had the experience to take care of the baby will experience anxiety when the infant is crying. Therefore, we need a way to understand about infant's cry and apply the formula. This research develops a system to classify the infant's cry sound using MACF (Mel-Frequency Cepstrum Coefficients) feature extraction and BNN (Backpropagation Neural Network) based on voice type. It is classified into 3 classes: hungry, discomfort, and tired. A voice input must be ascertained as infant's cry sound which using 3 features extraction (pitch with 2 approaches: Modified Autocorrelation Function and Cepstrum Pitch Determination, Energy, and Harmonic Ratio). The features coefficients of MFCC are furthermore classified by Backpropagation Neural Network. The experiment shows that the system can classify the infant's cry sound quite well, with 30 coefficients and 10 neurons in the hidden layer.\",\"PeriodicalId\":228650,\"journal\":{\"name\":\"2016 2nd International Conference on Science and Technology-Computer (ICST)\",\"volume\":\"23 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd International Conference on Science and Technology-Computer (ICST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTC.2016.7877367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Science and Technology-Computer (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTC.2016.7877367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Infant's cry sound classification using Mel-Frequency Cepstrum Coefficients feature extraction and Backpropagation Neural Network
Crying is a communication method used by infants given the limitations of language. Parents or nannies who have never had the experience to take care of the baby will experience anxiety when the infant is crying. Therefore, we need a way to understand about infant's cry and apply the formula. This research develops a system to classify the infant's cry sound using MACF (Mel-Frequency Cepstrum Coefficients) feature extraction and BNN (Backpropagation Neural Network) based on voice type. It is classified into 3 classes: hungry, discomfort, and tired. A voice input must be ascertained as infant's cry sound which using 3 features extraction (pitch with 2 approaches: Modified Autocorrelation Function and Cepstrum Pitch Determination, Energy, and Harmonic Ratio). The features coefficients of MFCC are furthermore classified by Backpropagation Neural Network. The experiment shows that the system can classify the infant's cry sound quite well, with 30 coefficients and 10 neurons in the hidden layer.