基于深度学习的双共振吸收光子结构逆设计

Baiping Li, Kehao Feng
{"title":"基于深度学习的双共振吸收光子结构逆设计","authors":"Baiping Li, Kehao Feng","doi":"10.1109/ICEICT51264.2020.9334209","DOIUrl":null,"url":null,"abstract":"Deep learning has made great progress in the field of inverse design of photonic structures, but the general artificial neural network has the problem of falling into a local minimum in inverse design. We introduce adaptive BN to solve the problem of difficult convergence and large error in a small sampling space. Using this method to predict the photonic structure parameters of graphene corresponding to the double resonance perfect absorption spectrum, a higher prediction accuracy is obtained., showing the superiority of the adaptive BN artificial neural network, and realizing the photonic structure of the on-demand spectral response anti-design.","PeriodicalId":124337,"journal":{"name":"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Design of Dual-resonant Absorption Photonic Structure based on Deep Learning\",\"authors\":\"Baiping Li, Kehao Feng\",\"doi\":\"10.1109/ICEICT51264.2020.9334209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning has made great progress in the field of inverse design of photonic structures, but the general artificial neural network has the problem of falling into a local minimum in inverse design. We introduce adaptive BN to solve the problem of difficult convergence and large error in a small sampling space. Using this method to predict the photonic structure parameters of graphene corresponding to the double resonance perfect absorption spectrum, a higher prediction accuracy is obtained., showing the superiority of the adaptive BN artificial neural network, and realizing the photonic structure of the on-demand spectral response anti-design.\",\"PeriodicalId\":124337,\"journal\":{\"name\":\"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEICT51264.2020.9334209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT51264.2020.9334209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习在光子结构反设计领域取得了很大的进展,但一般的人工神经网络在反设计中存在陷入局部极小的问题。为了解决小采样空间中难以收敛和误差大的问题,我们引入了自适应BN。利用该方法预测双共振完美吸收光谱对应的石墨烯光子结构参数,获得了较高的预测精度。,显示了自适应BN人工神经网络的优越性,实现了光子结构的按需光谱响应反设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse Design of Dual-resonant Absorption Photonic Structure based on Deep Learning
Deep learning has made great progress in the field of inverse design of photonic structures, but the general artificial neural network has the problem of falling into a local minimum in inverse design. We introduce adaptive BN to solve the problem of difficult convergence and large error in a small sampling space. Using this method to predict the photonic structure parameters of graphene corresponding to the double resonance perfect absorption spectrum, a higher prediction accuracy is obtained., showing the superiority of the adaptive BN artificial neural network, and realizing the photonic structure of the on-demand spectral response anti-design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信