在不同的资产领域中稳健投资组合的特征

W. Kim, Je Hyuk Lee
{"title":"在不同的资产领域中稳健投资组合的特征","authors":"W. Kim, Je Hyuk Lee","doi":"10.1080/21649502.2013.812718","DOIUrl":null,"url":null,"abstract":"In this paper, we find that the robust portfolios constructed from worst-case approaches systematically bet more on the factors in an asset universe composed of equities, fixed incomes, and commodities. This generalizes the findings that the robust equity portfolios are more tilted towards Fama–French factors than mean–variance portfolios. In addition, we show that the factor exposures of robust portfolios can be controlled by adding linear constraints to the original robust problems but the revised approach comes at the cost of decrease in robustness.","PeriodicalId":438897,"journal":{"name":"Quantitative Finance Letters","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of robust portfolios in a varied asset universe\",\"authors\":\"W. Kim, Je Hyuk Lee\",\"doi\":\"10.1080/21649502.2013.812718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we find that the robust portfolios constructed from worst-case approaches systematically bet more on the factors in an asset universe composed of equities, fixed incomes, and commodities. This generalizes the findings that the robust equity portfolios are more tilted towards Fama–French factors than mean–variance portfolios. In addition, we show that the factor exposures of robust portfolios can be controlled by adding linear constraints to the original robust problems but the revised approach comes at the cost of decrease in robustness.\",\"PeriodicalId\":438897,\"journal\":{\"name\":\"Quantitative Finance Letters\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Finance Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21649502.2013.812718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Finance Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21649502.2013.812718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们发现由最坏情况方法构建的稳健投资组合系统地更多地押注于由股票,固定收益和商品组成的资产领域中的因素。这概括了稳健的股票投资组合比均值方差投资组合更倾向于Fama-French因素的研究结果。此外,我们表明,稳健投资组合的因素暴露可以通过在原有的稳健问题上添加线性约束来控制,但修正的方法是以鲁棒性降低为代价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characteristics of robust portfolios in a varied asset universe
In this paper, we find that the robust portfolios constructed from worst-case approaches systematically bet more on the factors in an asset universe composed of equities, fixed incomes, and commodities. This generalizes the findings that the robust equity portfolios are more tilted towards Fama–French factors than mean–variance portfolios. In addition, we show that the factor exposures of robust portfolios can be controlled by adding linear constraints to the original robust problems but the revised approach comes at the cost of decrease in robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信