多RIS辅助无线网络中基于图神经网络的波束形成与RIS反射设计

Byung-Kwan Lim, Mai H. Vu
{"title":"多RIS辅助无线网络中基于图神经网络的波束形成与RIS反射设计","authors":"Byung-Kwan Lim, Mai H. Vu","doi":"10.1109/SSP53291.2023.10207958","DOIUrl":null,"url":null,"abstract":"We propose a graph neural network (GNN) architecture to optimize base station (BS) beamforming and reconfigurable intelligent surface (RIS) phase shifts in a multi-RIS assisted wireless network. We create a bipartite graph model to represent a network with multi-RIS, then construct the GNN architecture by exploiting channel information as node and edge features. We employ a message passing mechanism to enable information exchange between RIS nodes and user nodes and facilitate the inference of interference. Each node also maintains a representation vector which can be mapped to the BS beamforming or RIS phase shifts output. Message generation and update of the representation vector at each node are performed using two unsupervised neural networks, which are trained offline and then used on all nodes of the same type. Simulation results demonstrate that the proposed GNN architecture provides strong scalability with network size, generalizes to different settings, and significantly outperforms conventional algorithms.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Neural Network Based Beamforming and RIS Reflection Design in A Multi-RIS Assisted Wireless Network\",\"authors\":\"Byung-Kwan Lim, Mai H. Vu\",\"doi\":\"10.1109/SSP53291.2023.10207958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a graph neural network (GNN) architecture to optimize base station (BS) beamforming and reconfigurable intelligent surface (RIS) phase shifts in a multi-RIS assisted wireless network. We create a bipartite graph model to represent a network with multi-RIS, then construct the GNN architecture by exploiting channel information as node and edge features. We employ a message passing mechanism to enable information exchange between RIS nodes and user nodes and facilitate the inference of interference. Each node also maintains a representation vector which can be mapped to the BS beamforming or RIS phase shifts output. Message generation and update of the representation vector at each node are performed using two unsupervised neural networks, which are trained offline and then used on all nodes of the same type. Simulation results demonstrate that the proposed GNN architecture provides strong scalability with network size, generalizes to different settings, and significantly outperforms conventional algorithms.\",\"PeriodicalId\":296346,\"journal\":{\"name\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP53291.2023.10207958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10207958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种图神经网络(GNN)架构来优化多RIS辅助无线网络中的基站(BS)波束形成和可重构智能表面(RIS)相移。首先建立了一个二部图模型来表示具有多ris的网络,然后利用信道信息作为节点和边缘特征构建了GNN体系结构。我们采用消息传递机制实现RIS节点和用户节点之间的信息交换,促进干扰的推断。每个节点还维护一个表示向量,该表示向量可以映射到BS波束形成或RIS相移输出。每个节点的消息生成和表示向量的更新使用两个无监督神经网络进行,这些网络离线训练,然后在所有相同类型的节点上使用。仿真结果表明,所提出的GNN体系结构随网络规模的变化具有很强的可扩展性,可泛化到不同的设置,显著优于传统算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Neural Network Based Beamforming and RIS Reflection Design in A Multi-RIS Assisted Wireless Network
We propose a graph neural network (GNN) architecture to optimize base station (BS) beamforming and reconfigurable intelligent surface (RIS) phase shifts in a multi-RIS assisted wireless network. We create a bipartite graph model to represent a network with multi-RIS, then construct the GNN architecture by exploiting channel information as node and edge features. We employ a message passing mechanism to enable information exchange between RIS nodes and user nodes and facilitate the inference of interference. Each node also maintains a representation vector which can be mapped to the BS beamforming or RIS phase shifts output. Message generation and update of the representation vector at each node are performed using two unsupervised neural networks, which are trained offline and then used on all nodes of the same type. Simulation results demonstrate that the proposed GNN architecture provides strong scalability with network size, generalizes to different settings, and significantly outperforms conventional algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信