双JPEG压缩图像篡改检测的被动取证方法

Zhenli Liu, Xiaofeng Wang, Jing Chen
{"title":"双JPEG压缩图像篡改检测的被动取证方法","authors":"Zhenli Liu, Xiaofeng Wang, Jing Chen","doi":"10.1109/ISM.2011.37","DOIUrl":null,"url":null,"abstract":"A passive forensics method to detect tampering for double JPEG compression image is proposed. In the proposed method, inconsistency of quality factors is used to detect double JPEG compression, and then a passive forensics approach to detect tampering and locate tampered area for tampered JPEG images is proposed. Comparing with existing methods, the main advantages of the proposed method are as follows: (1) It can detect rotation, scaling and tampering in small area. (2) It has a high computing efficiency.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Passive Forensics Method to Detect Tampering for Double JPEG Compression Image\",\"authors\":\"Zhenli Liu, Xiaofeng Wang, Jing Chen\",\"doi\":\"10.1109/ISM.2011.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A passive forensics method to detect tampering for double JPEG compression image is proposed. In the proposed method, inconsistency of quality factors is used to detect double JPEG compression, and then a passive forensics approach to detect tampering and locate tampered area for tampered JPEG images is proposed. Comparing with existing methods, the main advantages of the proposed method are as follows: (1) It can detect rotation, scaling and tampering in small area. (2) It has a high computing efficiency.\",\"PeriodicalId\":339410,\"journal\":{\"name\":\"2011 IEEE International Symposium on Multimedia\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2011.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种用于双JPEG压缩图像篡改检测的被动取证方法。该方法利用质量因子不一致性检测双重JPEG压缩,然后提出一种被动取证方法,对被篡改的JPEG图像进行篡改检测和篡改区域定位。与现有方法相比,本文方法的主要优点是:(1)能够检测小范围内的旋转、缩放和篡改。(2)计算效率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Passive Forensics Method to Detect Tampering for Double JPEG Compression Image
A passive forensics method to detect tampering for double JPEG compression image is proposed. In the proposed method, inconsistency of quality factors is used to detect double JPEG compression, and then a passive forensics approach to detect tampering and locate tampered area for tampered JPEG images is proposed. Comparing with existing methods, the main advantages of the proposed method are as follows: (1) It can detect rotation, scaling and tampering in small area. (2) It has a high computing efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信