基于边缘计算设备的实时人脸识别

Samarth Gupta
{"title":"基于边缘计算设备的实时人脸识别","authors":"Samarth Gupta","doi":"10.1145/3384544.3384567","DOIUrl":null,"url":null,"abstract":"Face recognition systems have vast applications in surveillance systems and human-computer interactions. Different approaches such as Principal Component Analysis, Fisher linear discriminant analysis, Convolutional Neural Networks (CNN) have been commonly used for face recognition. However, in the recent times, CNN's have shown quite promising results in various face recognition systems. But, deep learning based CNNs have many limitations such as they require extensive training data, have excessively high computational and cooling requirements, and lack flexibility in deployment. Fields such as robotics and embedded systems that deploy face recognition systems have significantly less power on board and limited heat dissipation capacity. Therefore, it becomes difficult to deploy deep learning models on them but edge computing based devices like the Intel Neural Stick bridge this gap as they have certain advantages. In this paper, we review different applications of face recognition systems and various algorithms used for face recognition. We then elaborate the limitations of deep learning based face recognition systems and examine how edge-computing devices can solve these problems. We then present a flowchart to deploy a CNN based face recognition model on an edge-computing device.","PeriodicalId":200246,"journal":{"name":"Proceedings of the 2020 9th International Conference on Software and Computer Applications","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Real Time Face Recognition on an Edge Computing Device\",\"authors\":\"Samarth Gupta\",\"doi\":\"10.1145/3384544.3384567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition systems have vast applications in surveillance systems and human-computer interactions. Different approaches such as Principal Component Analysis, Fisher linear discriminant analysis, Convolutional Neural Networks (CNN) have been commonly used for face recognition. However, in the recent times, CNN's have shown quite promising results in various face recognition systems. But, deep learning based CNNs have many limitations such as they require extensive training data, have excessively high computational and cooling requirements, and lack flexibility in deployment. Fields such as robotics and embedded systems that deploy face recognition systems have significantly less power on board and limited heat dissipation capacity. Therefore, it becomes difficult to deploy deep learning models on them but edge computing based devices like the Intel Neural Stick bridge this gap as they have certain advantages. In this paper, we review different applications of face recognition systems and various algorithms used for face recognition. We then elaborate the limitations of deep learning based face recognition systems and examine how edge-computing devices can solve these problems. We then present a flowchart to deploy a CNN based face recognition model on an edge-computing device.\",\"PeriodicalId\":200246,\"journal\":{\"name\":\"Proceedings of the 2020 9th International Conference on Software and Computer Applications\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 9th International Conference on Software and Computer Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3384544.3384567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 9th International Conference on Software and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3384544.3384567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人脸识别系统在监控系统和人机交互中有着广泛的应用。不同的方法,如主成分分析,Fisher线性判别分析,卷积神经网络(CNN)已被广泛用于人脸识别。然而,在最近的一段时间里,CNN在各种人脸识别系统中显示出相当有希望的结果。但是,基于深度学习的cnn有很多局限性,比如需要大量的训练数据,对计算和冷却的要求过高,部署缺乏灵活性。在机器人和嵌入式系统等领域,部署人脸识别系统的功耗明显更低,散热能力也有限。因此,在这些设备上部署深度学习模型变得很困难,但像英特尔Neural Stick这样基于边缘计算的设备弥补了这一差距,因为它们具有一定的优势。在本文中,我们回顾了人脸识别系统的不同应用以及用于人脸识别的各种算法。然后,我们详细阐述了基于深度学习的人脸识别系统的局限性,并研究了边缘计算设备如何解决这些问题。然后,我们给出了一个流程图,以部署基于CNN的人脸识别模型在边缘计算设备上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real Time Face Recognition on an Edge Computing Device
Face recognition systems have vast applications in surveillance systems and human-computer interactions. Different approaches such as Principal Component Analysis, Fisher linear discriminant analysis, Convolutional Neural Networks (CNN) have been commonly used for face recognition. However, in the recent times, CNN's have shown quite promising results in various face recognition systems. But, deep learning based CNNs have many limitations such as they require extensive training data, have excessively high computational and cooling requirements, and lack flexibility in deployment. Fields such as robotics and embedded systems that deploy face recognition systems have significantly less power on board and limited heat dissipation capacity. Therefore, it becomes difficult to deploy deep learning models on them but edge computing based devices like the Intel Neural Stick bridge this gap as they have certain advantages. In this paper, we review different applications of face recognition systems and various algorithms used for face recognition. We then elaborate the limitations of deep learning based face recognition systems and examine how edge-computing devices can solve these problems. We then present a flowchart to deploy a CNN based face recognition model on an edge-computing device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信