扩展基于类比的软件工作量估算:多个hadoop实现方案的比较

Passakorn Phannachitta, J. Keung, Akito Monden, Ken-ichi Matsumoto
{"title":"扩展基于类比的软件工作量估算:多个hadoop实现方案的比较","authors":"Passakorn Phannachitta, J. Keung, Akito Monden, Ken-ichi Matsumoto","doi":"10.1145/2666581.2666582","DOIUrl":null,"url":null,"abstract":"Analogy-based estimation (ABE) is one of the most time consuming and compute intensive method in software development effort estimation. Optimizing ABE has been a dilemma because simplifying the procedure can reduce the estimation performance, while increasing the procedure complexity with more sophisticated theory may sacrifice an advantage of the unlimited scalability for a large data input. Motivated by an emergence of cloud computing technology in software applications, in this study we present 3 different implementation schemes based on Hadoop MapReduce to optimize the ABE process across multiple computing instances in the cloud-computing environment. We experimentally compared the 3 MapReduce implementation schemes in contrast with our previously proposed GPGPU approach (named ABE-CUDA) over 8 high-performance Amazon EC2 instances. Results present that the Hadoop solution can provide more computational resources that can extend the scalability of the ABE process. We recommend adoption of 2 different Hadoop implementations (Hadoop streaming and RHadoop) for accelerating the computation specifically for compute-intensive software engineering related tasks.","PeriodicalId":249136,"journal":{"name":"Proceedings of the International Workshop on Innovative Software Development Methodologies and Practices","volume":"366 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scaling up analogy-based software effort estimation: a comparison of multiple hadoop implementation schemes\",\"authors\":\"Passakorn Phannachitta, J. Keung, Akito Monden, Ken-ichi Matsumoto\",\"doi\":\"10.1145/2666581.2666582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analogy-based estimation (ABE) is one of the most time consuming and compute intensive method in software development effort estimation. Optimizing ABE has been a dilemma because simplifying the procedure can reduce the estimation performance, while increasing the procedure complexity with more sophisticated theory may sacrifice an advantage of the unlimited scalability for a large data input. Motivated by an emergence of cloud computing technology in software applications, in this study we present 3 different implementation schemes based on Hadoop MapReduce to optimize the ABE process across multiple computing instances in the cloud-computing environment. We experimentally compared the 3 MapReduce implementation schemes in contrast with our previously proposed GPGPU approach (named ABE-CUDA) over 8 high-performance Amazon EC2 instances. Results present that the Hadoop solution can provide more computational resources that can extend the scalability of the ABE process. We recommend adoption of 2 different Hadoop implementations (Hadoop streaming and RHadoop) for accelerating the computation specifically for compute-intensive software engineering related tasks.\",\"PeriodicalId\":249136,\"journal\":{\"name\":\"Proceedings of the International Workshop on Innovative Software Development Methodologies and Practices\",\"volume\":\"366 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Workshop on Innovative Software Development Methodologies and Practices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2666581.2666582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Workshop on Innovative Software Development Methodologies and Practices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666581.2666582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于类比的估算(ABE)是软件开发工作量估算中最耗时、计算量最大的方法之一。优化ABE一直是一个两难的问题,因为简化过程会降低估计性能,而使用更复杂的理论增加过程复杂性可能会牺牲大数据输入的无限可扩展性的优势。由于云计算技术在软件应用中的出现,在本研究中,我们提出了基于Hadoop MapReduce的3种不同的实现方案来优化云计算环境中跨多个计算实例的ABE过程。我们在8个高性能Amazon EC2实例上实验比较了3种MapReduce实现方案与我们之前提出的GPGPU方法(称为ABE-CUDA)的对比。结果表明,Hadoop解决方案可以提供更多的计算资源,可以扩展ABE过程的可扩展性。我们建议采用两种不同的Hadoop实现(Hadoop streaming和rha)来加速计算,特别是对于计算密集型的软件工程相关任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling up analogy-based software effort estimation: a comparison of multiple hadoop implementation schemes
Analogy-based estimation (ABE) is one of the most time consuming and compute intensive method in software development effort estimation. Optimizing ABE has been a dilemma because simplifying the procedure can reduce the estimation performance, while increasing the procedure complexity with more sophisticated theory may sacrifice an advantage of the unlimited scalability for a large data input. Motivated by an emergence of cloud computing technology in software applications, in this study we present 3 different implementation schemes based on Hadoop MapReduce to optimize the ABE process across multiple computing instances in the cloud-computing environment. We experimentally compared the 3 MapReduce implementation schemes in contrast with our previously proposed GPGPU approach (named ABE-CUDA) over 8 high-performance Amazon EC2 instances. Results present that the Hadoop solution can provide more computational resources that can extend the scalability of the ABE process. We recommend adoption of 2 different Hadoop implementations (Hadoop streaming and RHadoop) for accelerating the computation specifically for compute-intensive software engineering related tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信