{"title":"学习用于图像集分类的非线性重建模型","authors":"Munawar Hayat, Bennamoun, S. An","doi":"10.1109/CVPR.2014.246","DOIUrl":null,"url":null,"abstract":"We propose a deep learning framework for image set classification with application to face recognition. An Adaptive Deep Network Template (ADNT) is defined whose parameters are initialized by performing unsupervised pre-training in a layer-wise fashion using Gaussian Restricted Boltzmann Machines (GRBMs). The pre-initialized ADNT is then separately trained for images of each class and class-specific models are learnt. Based on the minimum reconstruction error from the learnt class-specific models, a majority voting strategy is used for classification. The proposed framework is extensively evaluated for the task of image set classification based face recognition on Honda/UCSD, CMU Mobo, YouTube Celebrities and a Kinect dataset. Our experimental results and comparisons with existing state-of-the-art methods show that the proposed method consistently achieves the best performance on all these datasets.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Learning Non-linear Reconstruction Models for Image Set Classification\",\"authors\":\"Munawar Hayat, Bennamoun, S. An\",\"doi\":\"10.1109/CVPR.2014.246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a deep learning framework for image set classification with application to face recognition. An Adaptive Deep Network Template (ADNT) is defined whose parameters are initialized by performing unsupervised pre-training in a layer-wise fashion using Gaussian Restricted Boltzmann Machines (GRBMs). The pre-initialized ADNT is then separately trained for images of each class and class-specific models are learnt. Based on the minimum reconstruction error from the learnt class-specific models, a majority voting strategy is used for classification. The proposed framework is extensively evaluated for the task of image set classification based face recognition on Honda/UCSD, CMU Mobo, YouTube Celebrities and a Kinect dataset. Our experimental results and comparisons with existing state-of-the-art methods show that the proposed method consistently achieves the best performance on all these datasets.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning Non-linear Reconstruction Models for Image Set Classification
We propose a deep learning framework for image set classification with application to face recognition. An Adaptive Deep Network Template (ADNT) is defined whose parameters are initialized by performing unsupervised pre-training in a layer-wise fashion using Gaussian Restricted Boltzmann Machines (GRBMs). The pre-initialized ADNT is then separately trained for images of each class and class-specific models are learnt. Based on the minimum reconstruction error from the learnt class-specific models, a majority voting strategy is used for classification. The proposed framework is extensively evaluated for the task of image set classification based face recognition on Honda/UCSD, CMU Mobo, YouTube Celebrities and a Kinect dataset. Our experimental results and comparisons with existing state-of-the-art methods show that the proposed method consistently achieves the best performance on all these datasets.