使用随机点模式的相机笔笔迹重建

Matthias Sperber, Martin Klinkigt, K. Kise, M. Iwamura, Benjamin Adrian, A. Dengel
{"title":"使用随机点模式的相机笔笔迹重建","authors":"Matthias Sperber, Martin Klinkigt, K. Kise, M. Iwamura, Benjamin Adrian, A. Dengel","doi":"10.1109/ICFHR.2010.32","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method of handwriting reconstruction using a camera pen. We print random dot patterns on the document background to enable retrieval of both the current document and the pen position on this document. Dot arrangements are stored in a hash table using Locally Likely Arrangement Hashing. For retrieval, they are extracted from the camera image and matched to the corresponding points in the hash table. We were able to achieve high retrieval accuracy (81.1~100.0%), given a sufficient amount of visible dots. Using a two-step homography approximation, an accurate image of handwriting can be reconstructed. By using knowledge about document context and a client-server architecture, our method allows real-time processing on ordinary hardware.","PeriodicalId":335044,"journal":{"name":"2010 12th International Conference on Frontiers in Handwriting Recognition","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Handwriting Reconstruction for a Camera Pen Using Random Dot Patterns\",\"authors\":\"Matthias Sperber, Martin Klinkigt, K. Kise, M. Iwamura, Benjamin Adrian, A. Dengel\",\"doi\":\"10.1109/ICFHR.2010.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new method of handwriting reconstruction using a camera pen. We print random dot patterns on the document background to enable retrieval of both the current document and the pen position on this document. Dot arrangements are stored in a hash table using Locally Likely Arrangement Hashing. For retrieval, they are extracted from the camera image and matched to the corresponding points in the hash table. We were able to achieve high retrieval accuracy (81.1~100.0%), given a sufficient amount of visible dots. Using a two-step homography approximation, an accurate image of handwriting can be reconstructed. By using knowledge about document context and a client-server architecture, our method allows real-time processing on ordinary hardware.\",\"PeriodicalId\":335044,\"journal\":{\"name\":\"2010 12th International Conference on Frontiers in Handwriting Recognition\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 12th International Conference on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2010.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2010.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种使用照相笔进行笔迹重建的新方法。我们在文档背景上打印随机的点模式,以便检索当前文档和此文档上的笔位置。点排列使用局部可能排列散列存储在散列表中。为了检索,从相机图像中提取它们并与哈希表中的相应点进行匹配。在给定足够数量的可见点的情况下,我们能够获得较高的检索精度(81.1~100.0%)。利用两步单应性近似,可以重建准确的笔迹图像。通过使用关于文档上下文和客户机-服务器体系结构的知识,我们的方法允许在普通硬件上进行实时处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handwriting Reconstruction for a Camera Pen Using Random Dot Patterns
This paper proposes a new method of handwriting reconstruction using a camera pen. We print random dot patterns on the document background to enable retrieval of both the current document and the pen position on this document. Dot arrangements are stored in a hash table using Locally Likely Arrangement Hashing. For retrieval, they are extracted from the camera image and matched to the corresponding points in the hash table. We were able to achieve high retrieval accuracy (81.1~100.0%), given a sufficient amount of visible dots. Using a two-step homography approximation, an accurate image of handwriting can be reconstructed. By using knowledge about document context and a client-server architecture, our method allows real-time processing on ordinary hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信