使用谷歌可教机器增强手势识别的学习率优化

Safyzan Salim, M. M. A. Jamil, R. Ambar, Wan Suhaimizan Wan Zaki, Suraya Mohammad
{"title":"使用谷歌可教机器增强手势识别的学习率优化","authors":"Safyzan Salim, M. M. A. Jamil, R. Ambar, Wan Suhaimizan Wan Zaki, Suraya Mohammad","doi":"10.1109/ICCSCE58721.2023.10237148","DOIUrl":null,"url":null,"abstract":"Developing efficient sign language recognition systems using wearable devices is a major challenge in Machine Learning. One obstacle is effectively translating gestures based on sensor data. Traditional methods involve complex programming using data fusion and mapping techniques. To address this, we need emerging technologies that simplify gesture data processing while maintaining accuracy. This study explores an artificial intelligence approach for detecting Bahasa Melayu using a ready-to-use machine learning framework-Google Teachable Machine. By experimenting with these tools, the research aims to improve the simplicity and accuracy of hand gesture detection. The study also investigates the impact of the learning rate, an important parameter in machine learning algorithms, on system performance, providing insights for optimizing gesture detection. The results of our study emphasize the significance of thoughtfully choosing the learning rate for successful model training. This underscores the importance of finding the optimal learning rate to ensure effective training, regardless of the specific machine learning framework employed.","PeriodicalId":287947,"journal":{"name":"2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Rate Optimization for Enhanced Hand Gesture Recognition using Google Teachable Machine\",\"authors\":\"Safyzan Salim, M. M. A. Jamil, R. Ambar, Wan Suhaimizan Wan Zaki, Suraya Mohammad\",\"doi\":\"10.1109/ICCSCE58721.2023.10237148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing efficient sign language recognition systems using wearable devices is a major challenge in Machine Learning. One obstacle is effectively translating gestures based on sensor data. Traditional methods involve complex programming using data fusion and mapping techniques. To address this, we need emerging technologies that simplify gesture data processing while maintaining accuracy. This study explores an artificial intelligence approach for detecting Bahasa Melayu using a ready-to-use machine learning framework-Google Teachable Machine. By experimenting with these tools, the research aims to improve the simplicity and accuracy of hand gesture detection. The study also investigates the impact of the learning rate, an important parameter in machine learning algorithms, on system performance, providing insights for optimizing gesture detection. The results of our study emphasize the significance of thoughtfully choosing the learning rate for successful model training. This underscores the importance of finding the optimal learning rate to ensure effective training, regardless of the specific machine learning framework employed.\",\"PeriodicalId\":287947,\"journal\":{\"name\":\"2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSCE58721.2023.10237148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE58721.2023.10237148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用可穿戴设备开发高效的手语识别系统是机器学习的主要挑战。其中一个障碍是基于传感器数据有效地翻译手势。传统方法涉及使用数据融合和映射技术的复杂编程。为了解决这个问题,我们需要在保持准确性的同时简化手势数据处理的新兴技术。本研究探索了一种人工智能方法,使用一个现成的机器学习框架-谷歌可教机器来检测马来语。通过对这些工具的实验,本研究旨在提高手势检测的简单性和准确性。该研究还研究了学习率(机器学习算法中的一个重要参数)对系统性能的影响,为优化手势检测提供了见解。我们的研究结果强调了深思熟虑地选择学习率对成功的模型训练的重要性。这强调了找到最佳学习率以确保有效训练的重要性,而不管采用何种特定的机器学习框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Rate Optimization for Enhanced Hand Gesture Recognition using Google Teachable Machine
Developing efficient sign language recognition systems using wearable devices is a major challenge in Machine Learning. One obstacle is effectively translating gestures based on sensor data. Traditional methods involve complex programming using data fusion and mapping techniques. To address this, we need emerging technologies that simplify gesture data processing while maintaining accuracy. This study explores an artificial intelligence approach for detecting Bahasa Melayu using a ready-to-use machine learning framework-Google Teachable Machine. By experimenting with these tools, the research aims to improve the simplicity and accuracy of hand gesture detection. The study also investigates the impact of the learning rate, an important parameter in machine learning algorithms, on system performance, providing insights for optimizing gesture detection. The results of our study emphasize the significance of thoughtfully choosing the learning rate for successful model training. This underscores the importance of finding the optimal learning rate to ensure effective training, regardless of the specific machine learning framework employed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信