{"title":"接收机侧功率约束下的高斯MIMO窃听信道","authors":"Karim A. Banawan, S. Ulukus","doi":"10.1109/ALLERTON.2014.7028454","DOIUrl":null,"url":null,"abstract":"We consider the multiple-input multiple-output (MIMO) wiretap channel under a minimum receiver-side power constraint in addition to the usual maximum transmitter-side power constraint. This problem is motivated by energy harvesting communications with wireless energy transfer, where an added goal is to deliver a minimum amount of energy to a receiver in addition to delivering secure data to another receiver. In this paper, we characterize the exact secrecy capacity of the MIMO wiretap channel under transmitter and receiver-side power constraints. We first show that solving this problem is equivalent to solving the secrecy capacity of a wiretap channel with a double-sided correlation matrix constraint on the channel input. We show the converse by extending the channel enhancement technique to our case. We present two achievable schemes that achieve the secrecy capacity: the first achievable scheme uses a Gaussian codebook with a fixed mean, and the second achievable scheme uses artificial noise (or cooperative jamming) together with a Gaussian codebook. The role of the mean or the artificial noise is to enable energy transfer without sacrificing from the secure rate. This is the first instance of a channel model where either the use of a mean signal or use of channel prefixing via artificial noise is strictly necessary in the MIMO wiretap channel.","PeriodicalId":330880,"journal":{"name":"2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Gaussian MIMO wiretap channel under receiver side power constraints\",\"authors\":\"Karim A. Banawan, S. Ulukus\",\"doi\":\"10.1109/ALLERTON.2014.7028454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the multiple-input multiple-output (MIMO) wiretap channel under a minimum receiver-side power constraint in addition to the usual maximum transmitter-side power constraint. This problem is motivated by energy harvesting communications with wireless energy transfer, where an added goal is to deliver a minimum amount of energy to a receiver in addition to delivering secure data to another receiver. In this paper, we characterize the exact secrecy capacity of the MIMO wiretap channel under transmitter and receiver-side power constraints. We first show that solving this problem is equivalent to solving the secrecy capacity of a wiretap channel with a double-sided correlation matrix constraint on the channel input. We show the converse by extending the channel enhancement technique to our case. We present two achievable schemes that achieve the secrecy capacity: the first achievable scheme uses a Gaussian codebook with a fixed mean, and the second achievable scheme uses artificial noise (or cooperative jamming) together with a Gaussian codebook. The role of the mean or the artificial noise is to enable energy transfer without sacrificing from the secure rate. This is the first instance of a channel model where either the use of a mean signal or use of channel prefixing via artificial noise is strictly necessary in the MIMO wiretap channel.\",\"PeriodicalId\":330880,\"journal\":{\"name\":\"2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2014.7028454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2014.7028454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gaussian MIMO wiretap channel under receiver side power constraints
We consider the multiple-input multiple-output (MIMO) wiretap channel under a minimum receiver-side power constraint in addition to the usual maximum transmitter-side power constraint. This problem is motivated by energy harvesting communications with wireless energy transfer, where an added goal is to deliver a minimum amount of energy to a receiver in addition to delivering secure data to another receiver. In this paper, we characterize the exact secrecy capacity of the MIMO wiretap channel under transmitter and receiver-side power constraints. We first show that solving this problem is equivalent to solving the secrecy capacity of a wiretap channel with a double-sided correlation matrix constraint on the channel input. We show the converse by extending the channel enhancement technique to our case. We present two achievable schemes that achieve the secrecy capacity: the first achievable scheme uses a Gaussian codebook with a fixed mean, and the second achievable scheme uses artificial noise (or cooperative jamming) together with a Gaussian codebook. The role of the mean or the artificial noise is to enable energy transfer without sacrificing from the secure rate. This is the first instance of a channel model where either the use of a mean signal or use of channel prefixing via artificial noise is strictly necessary in the MIMO wiretap channel.