{"title":"多媒介半量子密钥分配","authors":"Walter O. Krawec","doi":"10.1109/GCWkshps45667.2019.9024404","DOIUrl":null,"url":null,"abstract":"A semi-quantum key distribution (SQKD) protocol allows two users $A$ and $B$ to establish a shared secret key that is secure against an all-powerful adversary $E$ even when one of the users (e.g., $B$) is semi-quantum or classical in nature while the other is fully-quantum. A mediated SQKD protocol allows two semi-quantum users to establish a key with the help of an adversarial quantum server. We introduce the concept of a multi-mediated SQKD protocol where two (or more) adversarial quantum servers are used. We construct a new protocol in this model and show how it can withstand high levels of quantum noise, though at a cost to efficiency. We perform an information theoretic security analysis and, along the way, prove a general security result applicable to arbitrary MM-SQKD protocols. Finally, a comparison is made to previous (S)QKD protocols.","PeriodicalId":210825,"journal":{"name":"2019 IEEE Globecom Workshops (GC Wkshps)","volume":"61 Suppl 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multi-Mediated Semi-Quantum Key Distribution\",\"authors\":\"Walter O. Krawec\",\"doi\":\"10.1109/GCWkshps45667.2019.9024404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A semi-quantum key distribution (SQKD) protocol allows two users $A$ and $B$ to establish a shared secret key that is secure against an all-powerful adversary $E$ even when one of the users (e.g., $B$) is semi-quantum or classical in nature while the other is fully-quantum. A mediated SQKD protocol allows two semi-quantum users to establish a key with the help of an adversarial quantum server. We introduce the concept of a multi-mediated SQKD protocol where two (or more) adversarial quantum servers are used. We construct a new protocol in this model and show how it can withstand high levels of quantum noise, though at a cost to efficiency. We perform an information theoretic security analysis and, along the way, prove a general security result applicable to arbitrary MM-SQKD protocols. Finally, a comparison is made to previous (S)QKD protocols.\",\"PeriodicalId\":210825,\"journal\":{\"name\":\"2019 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"61 Suppl 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCWkshps45667.2019.9024404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps45667.2019.9024404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A semi-quantum key distribution (SQKD) protocol allows two users $A$ and $B$ to establish a shared secret key that is secure against an all-powerful adversary $E$ even when one of the users (e.g., $B$) is semi-quantum or classical in nature while the other is fully-quantum. A mediated SQKD protocol allows two semi-quantum users to establish a key with the help of an adversarial quantum server. We introduce the concept of a multi-mediated SQKD protocol where two (or more) adversarial quantum servers are used. We construct a new protocol in this model and show how it can withstand high levels of quantum noise, though at a cost to efficiency. We perform an information theoretic security analysis and, along the way, prove a general security result applicable to arbitrary MM-SQKD protocols. Finally, a comparison is made to previous (S)QKD protocols.