M. P. Rao, B. S. sahrudi, G. Srihari, K. K. Chary, S. Mahesh
{"title":"基于学习成绩提取特征对学生进行分类","authors":"M. P. Rao, B. S. sahrudi, G. Srihari, K. K. Chary, S. Mahesh","doi":"10.35338/ejasr.2022.4601","DOIUrl":null,"url":null,"abstract":"In today's educational climate, developing tools to support students and learning in a traditional or online context is a crucial responsibility. The first stages in employing machine learning techniques to enable such technology centered on forecasting a student's success in terms of marks earned. The disadvantage of these methods is that they are not as effective at predicting low-achieving students. The goal of our efforts is twofold. To begin, we investigate whether badly performing students may be more accurately predicted by recasting the task as a binary classification problem. Second, in order to learn more about the reasons that contribute to bad performance, we created a set of human-interpretable attributes that quantify these aspects. We conduct a study based on these characteristics to identify distinct student groups of interest while also determining their value.","PeriodicalId":112326,"journal":{"name":"Emperor Journal of Applied Scientific Research","volume":"64 2-3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracting Features to Classify Students Based on their Academic Performance\",\"authors\":\"M. P. Rao, B. S. sahrudi, G. Srihari, K. K. Chary, S. Mahesh\",\"doi\":\"10.35338/ejasr.2022.4601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's educational climate, developing tools to support students and learning in a traditional or online context is a crucial responsibility. The first stages in employing machine learning techniques to enable such technology centered on forecasting a student's success in terms of marks earned. The disadvantage of these methods is that they are not as effective at predicting low-achieving students. The goal of our efforts is twofold. To begin, we investigate whether badly performing students may be more accurately predicted by recasting the task as a binary classification problem. Second, in order to learn more about the reasons that contribute to bad performance, we created a set of human-interpretable attributes that quantify these aspects. We conduct a study based on these characteristics to identify distinct student groups of interest while also determining their value.\",\"PeriodicalId\":112326,\"journal\":{\"name\":\"Emperor Journal of Applied Scientific Research\",\"volume\":\"64 2-3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emperor Journal of Applied Scientific Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35338/ejasr.2022.4601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emperor Journal of Applied Scientific Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35338/ejasr.2022.4601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extracting Features to Classify Students Based on their Academic Performance
In today's educational climate, developing tools to support students and learning in a traditional or online context is a crucial responsibility. The first stages in employing machine learning techniques to enable such technology centered on forecasting a student's success in terms of marks earned. The disadvantage of these methods is that they are not as effective at predicting low-achieving students. The goal of our efforts is twofold. To begin, we investigate whether badly performing students may be more accurately predicted by recasting the task as a binary classification problem. Second, in order to learn more about the reasons that contribute to bad performance, we created a set of human-interpretable attributes that quantify these aspects. We conduct a study based on these characteristics to identify distinct student groups of interest while also determining their value.