利用教育数据集探索和评估Apache Spark的可扩展性和效率

Jian Zhang, Zijiang Yang, Y. Benslimane
{"title":"利用教育数据集探索和评估Apache Spark的可扩展性和效率","authors":"Jian Zhang, Zijiang Yang, Y. Benslimane","doi":"10.1109/ICMLC48188.2019.8949260","DOIUrl":null,"url":null,"abstract":"The combination of data mining and machine learning technology with web-based education system is becoming an imperative research area to enhance the quality of education beyond the traditional concept. With the worldwide fast growth of the Information Communication Technology (ICT), data come with significant large volume, high velocity and extensive variety. In this paper, four popular data mining methods are applied on Apache Spark using large volume of datasets from Online Cognitive Learning Systems to explore the scalability and efficiency of Spark. Various volumes of datasets are tested on Spark MLlib with different running configurations and parameter tunings. The output of the paper convincingly presents useful strategies of computing resource allocation and tuning to make full advantage of the in-memory system of Apache Spark with the tasks of data mining and machine learning on educational datasets.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exploring and Evaluating the Scalability and Eficinecy of Apache Spark Using Educational Datasets\",\"authors\":\"Jian Zhang, Zijiang Yang, Y. Benslimane\",\"doi\":\"10.1109/ICMLC48188.2019.8949260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of data mining and machine learning technology with web-based education system is becoming an imperative research area to enhance the quality of education beyond the traditional concept. With the worldwide fast growth of the Information Communication Technology (ICT), data come with significant large volume, high velocity and extensive variety. In this paper, four popular data mining methods are applied on Apache Spark using large volume of datasets from Online Cognitive Learning Systems to explore the scalability and efficiency of Spark. Various volumes of datasets are tested on Spark MLlib with different running configurations and parameter tunings. The output of the paper convincingly presents useful strategies of computing resource allocation and tuning to make full advantage of the in-memory system of Apache Spark with the tasks of data mining and machine learning on educational datasets.\",\"PeriodicalId\":221349,\"journal\":{\"name\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC48188.2019.8949260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将数据挖掘和机器学习技术与基于网络的教育系统相结合,正在成为超越传统观念提高教育质量的一个势在必行的研究领域。随着信息通信技术(ICT)在世界范围内的快速发展,数据量大、速度快、种类多。本文利用来自Online Cognitive Learning Systems的大量数据集,将四种流行的数据挖掘方法应用到Apache Spark上,探索Spark的可扩展性和效率。在Spark MLlib上使用不同的运行配置和参数调优测试了不同数量的数据集。本文的结果令人信服地提出了有效的计算资源分配和调优策略,以充分利用Apache Spark内存系统在教育数据集上的数据挖掘和机器学习任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring and Evaluating the Scalability and Eficinecy of Apache Spark Using Educational Datasets
The combination of data mining and machine learning technology with web-based education system is becoming an imperative research area to enhance the quality of education beyond the traditional concept. With the worldwide fast growth of the Information Communication Technology (ICT), data come with significant large volume, high velocity and extensive variety. In this paper, four popular data mining methods are applied on Apache Spark using large volume of datasets from Online Cognitive Learning Systems to explore the scalability and efficiency of Spark. Various volumes of datasets are tested on Spark MLlib with different running configurations and parameter tunings. The output of the paper convincingly presents useful strategies of computing resource allocation and tuning to make full advantage of the in-memory system of Apache Spark with the tasks of data mining and machine learning on educational datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信