下一代5G通信系统中基于机器学习的信道跟踪

Hyeonsu Kim, Sangmi Moon, I. Hwang
{"title":"下一代5G通信系统中基于机器学习的信道跟踪","authors":"Hyeonsu Kim, Sangmi Moon, I. Hwang","doi":"10.1109/ICUFN49451.2021.9528722","DOIUrl":null,"url":null,"abstract":"The use of millimeter-wave (mmWave) frequencies is a promising technology for meeting the ever-growing data traffic in next-generation wireless communications. A major challenge of mmWave communications is the high path loss. To overcome this issue, mmWave systems adopt beamforming techniques, which require robust channel estimation and tracking algorithms to maintain an adequate quality of service. In this study, we propose the machine learning-based channel tracking algorithm for vehicular mmWave communications. In this paper, we propose a long short-term memory (LSTM)-based channel tracking algorithm for vehicle-to-infrastructure mmWave communications. The bidirectional LSTM is leveraged to track the channel. Simulation results demonstrate that the proposed algorithm efficiently tracks the mmWave channel with negligible training overhead.","PeriodicalId":318542,"journal":{"name":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-based Channel Tracking for Next-Generation 5G Communication System\",\"authors\":\"Hyeonsu Kim, Sangmi Moon, I. Hwang\",\"doi\":\"10.1109/ICUFN49451.2021.9528722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of millimeter-wave (mmWave) frequencies is a promising technology for meeting the ever-growing data traffic in next-generation wireless communications. A major challenge of mmWave communications is the high path loss. To overcome this issue, mmWave systems adopt beamforming techniques, which require robust channel estimation and tracking algorithms to maintain an adequate quality of service. In this study, we propose the machine learning-based channel tracking algorithm for vehicular mmWave communications. In this paper, we propose a long short-term memory (LSTM)-based channel tracking algorithm for vehicle-to-infrastructure mmWave communications. The bidirectional LSTM is leveraged to track the channel. Simulation results demonstrate that the proposed algorithm efficiently tracks the mmWave channel with negligible training overhead.\",\"PeriodicalId\":318542,\"journal\":{\"name\":\"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUFN49451.2021.9528722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN49451.2021.9528722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

毫米波(mmWave)频率的使用是一种很有前途的技术,可以满足下一代无线通信中不断增长的数据流量。毫米波通信的一个主要挑战是高路径损耗。为了克服这个问题,毫米波系统采用波束成形技术,这需要稳健的信道估计和跟踪算法来保持足够的服务质量。在这项研究中,我们提出了一种基于机器学习的车载毫米波通信信道跟踪算法。在本文中,我们提出了一种基于长短期记忆(LSTM)的通道跟踪算法,用于车辆到基础设施的毫米波通信。利用双向LSTM来跟踪信道。仿真结果表明,该算法可以有效地跟踪毫米波信道,且训练开销可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-based Channel Tracking for Next-Generation 5G Communication System
The use of millimeter-wave (mmWave) frequencies is a promising technology for meeting the ever-growing data traffic in next-generation wireless communications. A major challenge of mmWave communications is the high path loss. To overcome this issue, mmWave systems adopt beamforming techniques, which require robust channel estimation and tracking algorithms to maintain an adequate quality of service. In this study, we propose the machine learning-based channel tracking algorithm for vehicular mmWave communications. In this paper, we propose a long short-term memory (LSTM)-based channel tracking algorithm for vehicle-to-infrastructure mmWave communications. The bidirectional LSTM is leveraged to track the channel. Simulation results demonstrate that the proposed algorithm efficiently tracks the mmWave channel with negligible training overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信