基于模型和数据驱动的综合诊断策略在防抱死制动系统中的应用

Jianhui Luo, M. Namburu, K. Pattipati, Liu Qiao, S. Chigusa
{"title":"基于模型和数据驱动的综合诊断策略在防抱死制动系统中的应用","authors":"Jianhui Luo, M. Namburu, K. Pattipati, Liu Qiao, S. Chigusa","doi":"10.1109/AERO.2005.1559675","DOIUrl":null,"url":null,"abstract":"Model-based fault diagnosis, using statistical techniques, residual generation (by analytical redundancy), and parameter estimation, has been an active area of research for the past four decades. However, these techniques are developed in isolation and generally a single technique can not address the diagnostic problems in complex systems. In this paper, we investigate a hybrid approach, which combines different techniques to obtain better diagnostic performance than the use of a single technique alone, and demonstrate it on an anti-lock brake system. In this approach, we first combine the parity equations and nonlinear observer to generate the residuals. Statistical tests, in particular generalized likelihood ratio tests (GLRT), are used to detect a subset of faults that are easier to detect. Support vector machines (SVM) is used for fault isolation of less-sensitive parametric faults. Finally, subset selection for improved parameter estimation is used to estimate fault severity","PeriodicalId":117223,"journal":{"name":"2005 IEEE Aerospace Conference","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Integrated model-based and data-driven diagnostic strategies applied to an anti-lock brake system\",\"authors\":\"Jianhui Luo, M. Namburu, K. Pattipati, Liu Qiao, S. Chigusa\",\"doi\":\"10.1109/AERO.2005.1559675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-based fault diagnosis, using statistical techniques, residual generation (by analytical redundancy), and parameter estimation, has been an active area of research for the past four decades. However, these techniques are developed in isolation and generally a single technique can not address the diagnostic problems in complex systems. In this paper, we investigate a hybrid approach, which combines different techniques to obtain better diagnostic performance than the use of a single technique alone, and demonstrate it on an anti-lock brake system. In this approach, we first combine the parity equations and nonlinear observer to generate the residuals. Statistical tests, in particular generalized likelihood ratio tests (GLRT), are used to detect a subset of faults that are easier to detect. Support vector machines (SVM) is used for fault isolation of less-sensitive parametric faults. Finally, subset selection for improved parameter estimation is used to estimate fault severity\",\"PeriodicalId\":117223,\"journal\":{\"name\":\"2005 IEEE Aerospace Conference\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2005.1559675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2005.1559675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

基于模型的故障诊断,利用统计技术、残差生成(通过分析冗余)和参数估计,在过去的四十年中一直是一个活跃的研究领域。然而,这些技术是孤立地发展起来的,通常单一的技术不能解决复杂系统中的诊断问题。在本文中,我们研究了一种混合方法,它结合了不同的技术来获得比单独使用单一技术更好的诊断性能,并在一个防抱死制动系统上进行了演示。在这种方法中,我们首先结合宇称方程和非线性观测器来产生残差。统计测试,特别是广义似然比测试(GLRT),用于检测更容易检测的故障子集。支持向量机(SVM)用于对不太敏感的参数故障进行故障隔离。最后,采用改进参数估计的子集选择来估计故障严重程度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated model-based and data-driven diagnostic strategies applied to an anti-lock brake system
Model-based fault diagnosis, using statistical techniques, residual generation (by analytical redundancy), and parameter estimation, has been an active area of research for the past four decades. However, these techniques are developed in isolation and generally a single technique can not address the diagnostic problems in complex systems. In this paper, we investigate a hybrid approach, which combines different techniques to obtain better diagnostic performance than the use of a single technique alone, and demonstrate it on an anti-lock brake system. In this approach, we first combine the parity equations and nonlinear observer to generate the residuals. Statistical tests, in particular generalized likelihood ratio tests (GLRT), are used to detect a subset of faults that are easier to detect. Support vector machines (SVM) is used for fault isolation of less-sensitive parametric faults. Finally, subset selection for improved parameter estimation is used to estimate fault severity
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信