Anima Anandkumar, L. Tong, A. Swami, A. Ephremides
{"title":"基于本地化处理的最小代价数据聚合统计推断","authors":"Anima Anandkumar, L. Tong, A. Swami, A. Ephremides","doi":"10.1109/INFOCOM.2008.129","DOIUrl":null,"url":null,"abstract":"The problem of minimum cost in-network fusion of measurements, collected from distributed sensors via multihop routing is considered. A designated fusion center performs an optimal statistical-inference test on the correlated measurements, drawn from a Markov random field. Conditioned on the delivery of a sufficient statistic for inference to the fusion center, the structure of optimal routing and fusion is shown to be a Steiner tree on a transformed graph. This Steiner-tree reduction preserves the approximation ratio, which implies that any Sterner- tree approximation can be employed for minimum cost fusion with the same approximation ratio. The proposed fusion scheme involves routing packets of two types viz., raw measurements sent for local processing, and aggregates obtained on combining these processed values. The performance of heuristics for minimum cost fusion are evaluated through theory and simulations, showing a significant saving in routing costs, when compared to routing all the raw measurements to the fusion center.","PeriodicalId":447520,"journal":{"name":"IEEE INFOCOM 2008 - The 27th Conference on Computer Communications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Minimum Cost Data Aggregation with Localized Processing for Statistical Inference\",\"authors\":\"Anima Anandkumar, L. Tong, A. Swami, A. Ephremides\",\"doi\":\"10.1109/INFOCOM.2008.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of minimum cost in-network fusion of measurements, collected from distributed sensors via multihop routing is considered. A designated fusion center performs an optimal statistical-inference test on the correlated measurements, drawn from a Markov random field. Conditioned on the delivery of a sufficient statistic for inference to the fusion center, the structure of optimal routing and fusion is shown to be a Steiner tree on a transformed graph. This Steiner-tree reduction preserves the approximation ratio, which implies that any Sterner- tree approximation can be employed for minimum cost fusion with the same approximation ratio. The proposed fusion scheme involves routing packets of two types viz., raw measurements sent for local processing, and aggregates obtained on combining these processed values. The performance of heuristics for minimum cost fusion are evaluated through theory and simulations, showing a significant saving in routing costs, when compared to routing all the raw measurements to the fusion center.\",\"PeriodicalId\":447520,\"journal\":{\"name\":\"IEEE INFOCOM 2008 - The 27th Conference on Computer Communications\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2008 - The 27th Conference on Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM.2008.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2008 - The 27th Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2008.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimum Cost Data Aggregation with Localized Processing for Statistical Inference
The problem of minimum cost in-network fusion of measurements, collected from distributed sensors via multihop routing is considered. A designated fusion center performs an optimal statistical-inference test on the correlated measurements, drawn from a Markov random field. Conditioned on the delivery of a sufficient statistic for inference to the fusion center, the structure of optimal routing and fusion is shown to be a Steiner tree on a transformed graph. This Steiner-tree reduction preserves the approximation ratio, which implies that any Sterner- tree approximation can be employed for minimum cost fusion with the same approximation ratio. The proposed fusion scheme involves routing packets of two types viz., raw measurements sent for local processing, and aggregates obtained on combining these processed values. The performance of heuristics for minimum cost fusion are evaluated through theory and simulations, showing a significant saving in routing costs, when compared to routing all the raw measurements to the fusion center.