基于pbl的重构降低燃料电池/光伏混合动力系统的燃料消耗

C. Ramos-Paja, F. Bolaños, D. Gonzalez, F. Ramirez, J. Camarillo
{"title":"基于pbl的重构降低燃料电池/光伏混合动力系统的燃料消耗","authors":"C. Ramos-Paja, F. Bolaños, D. Gonzalez, F. Ramirez, J. Camarillo","doi":"10.1109/APCASE.2015.23","DOIUrl":null,"url":null,"abstract":"This paper proposes a strategy base on a Population-Based Incremental Learning (PBIL) algorithm to reduce the fuel consumption in hybrid fuel cell/photovoltaic power systems. The strategy is focused on increasing the power produced by the photovoltaic (PV) generator to reduce the fuel needed to supply the load. Such an improvement is achieved by reducing the effect of shadows over the system, which is done by dynamically reconfiguring the connections between the PV modules. In such a way, the proposed PBIL algorithm accelerates the detection of the optimal configuration, in comparison with classical approaches. Finally, detailed simulations are used to demonstrate the efficiency of the proposed solution.","PeriodicalId":235698,"journal":{"name":"2015 Asia-Pacific Conference on Computer Aided System Engineering","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reducing the Fuel Consumption of Hybrid Fuel Cell/Photovoltaic Power Systems Using PBIL-Based Reconfiguration\",\"authors\":\"C. Ramos-Paja, F. Bolaños, D. Gonzalez, F. Ramirez, J. Camarillo\",\"doi\":\"10.1109/APCASE.2015.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a strategy base on a Population-Based Incremental Learning (PBIL) algorithm to reduce the fuel consumption in hybrid fuel cell/photovoltaic power systems. The strategy is focused on increasing the power produced by the photovoltaic (PV) generator to reduce the fuel needed to supply the load. Such an improvement is achieved by reducing the effect of shadows over the system, which is done by dynamically reconfiguring the connections between the PV modules. In such a way, the proposed PBIL algorithm accelerates the detection of the optimal configuration, in comparison with classical approaches. Finally, detailed simulations are used to demonstrate the efficiency of the proposed solution.\",\"PeriodicalId\":235698,\"journal\":{\"name\":\"2015 Asia-Pacific Conference on Computer Aided System Engineering\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Asia-Pacific Conference on Computer Aided System Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCASE.2015.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Asia-Pacific Conference on Computer Aided System Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCASE.2015.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于种群增量学习(PBIL)算法的燃料电池/光伏混合动力系统燃料消耗降低策略。该策略的重点是增加光伏(PV)发电机的发电量,以减少供应负荷所需的燃料。这样的改进是通过减少阴影对系统的影响来实现的,这是通过动态地重新配置光伏模块之间的连接来实现的。通过这种方式,与经典方法相比,所提出的PBIL算法加速了最优配置的检测。最后,通过详细的仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing the Fuel Consumption of Hybrid Fuel Cell/Photovoltaic Power Systems Using PBIL-Based Reconfiguration
This paper proposes a strategy base on a Population-Based Incremental Learning (PBIL) algorithm to reduce the fuel consumption in hybrid fuel cell/photovoltaic power systems. The strategy is focused on increasing the power produced by the photovoltaic (PV) generator to reduce the fuel needed to supply the load. Such an improvement is achieved by reducing the effect of shadows over the system, which is done by dynamically reconfiguring the connections between the PV modules. In such a way, the proposed PBIL algorithm accelerates the detection of the optimal configuration, in comparison with classical approaches. Finally, detailed simulations are used to demonstrate the efficiency of the proposed solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信