基于规则的人工神经网络智能调度优化

S.M. Ruegsegger
{"title":"基于规则的人工神经网络智能调度优化","authors":"S.M. Ruegsegger","doi":"10.1109/NAECON.1993.290840","DOIUrl":null,"url":null,"abstract":"Requirements for greater precision and reduced rejection/acceptance errors demand improved inspection methods that can be provided by implementing increased automation into the quality control (QC) process. Automated inspection planners can require significant human interface work deciphering the generated output, often requiring more work than the service they provide. The output of an automated inspection planner needs to produce a process plan that would resemble one created by an expert inspector. This paper discusses the implementation of an artificial neural network (ANN) to optimize the sequence of inspection points based upon inspection rule criteria. Using features from a feature-based CAD, the automated inspection planner uses the inspection rules to create \"rule matrices\" that the ANN will use to sequence the inspection points to be probed by a coordinate measurement machine (CMM). This is an extension of the familiar traveling salesman problem (TSP) solved by a Hopfield neural network.<<ETX>>","PeriodicalId":183796,"journal":{"name":"Proceedings of the IEEE 1993 National Aerospace and Electronics Conference-NAECON 1993","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Intelligent scheduling optimization using a rule-based artificial neural network\",\"authors\":\"S.M. Ruegsegger\",\"doi\":\"10.1109/NAECON.1993.290840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Requirements for greater precision and reduced rejection/acceptance errors demand improved inspection methods that can be provided by implementing increased automation into the quality control (QC) process. Automated inspection planners can require significant human interface work deciphering the generated output, often requiring more work than the service they provide. The output of an automated inspection planner needs to produce a process plan that would resemble one created by an expert inspector. This paper discusses the implementation of an artificial neural network (ANN) to optimize the sequence of inspection points based upon inspection rule criteria. Using features from a feature-based CAD, the automated inspection planner uses the inspection rules to create \\\"rule matrices\\\" that the ANN will use to sequence the inspection points to be probed by a coordinate measurement machine (CMM). This is an extension of the familiar traveling salesman problem (TSP) solved by a Hopfield neural network.<<ETX>>\",\"PeriodicalId\":183796,\"journal\":{\"name\":\"Proceedings of the IEEE 1993 National Aerospace and Electronics Conference-NAECON 1993\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 1993 National Aerospace and Electronics Conference-NAECON 1993\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.1993.290840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 1993 National Aerospace and Electronics Conference-NAECON 1993","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.1993.290840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对更高精度和更少拒收/验收错误的需求需要改进的检查方法,这些方法可以通过在质量控制(QC)过程中实现更高的自动化来提供。自动检查计划器可能需要大量的人工界面工作来解读生成的输出,通常需要比它们提供的服务更多的工作。自动检查计划器的输出需要生成一个类似于专家检查器创建的过程计划。本文讨论了一种基于检测规则准则的人工神经网络优化检测点序列的实现方法。使用来自基于特征的CAD的特征,自动检查计划使用检查规则来创建“规则矩阵”,人工神经网络将使用该规则来对要由坐标测量机(CMM)探测的检查点进行排序。这是用Hopfield神经网络解决的旅行商问题(TSP)的一个扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent scheduling optimization using a rule-based artificial neural network
Requirements for greater precision and reduced rejection/acceptance errors demand improved inspection methods that can be provided by implementing increased automation into the quality control (QC) process. Automated inspection planners can require significant human interface work deciphering the generated output, often requiring more work than the service they provide. The output of an automated inspection planner needs to produce a process plan that would resemble one created by an expert inspector. This paper discusses the implementation of an artificial neural network (ANN) to optimize the sequence of inspection points based upon inspection rule criteria. Using features from a feature-based CAD, the automated inspection planner uses the inspection rules to create "rule matrices" that the ANN will use to sequence the inspection points to be probed by a coordinate measurement machine (CMM). This is an extension of the familiar traveling salesman problem (TSP) solved by a Hopfield neural network.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信