基于自适应带宽和权值选择的高空间遥感图像分割均值移位算法

Qinling Dai, Leiguang Wang, Qizhi Xu, Yun Zhang
{"title":"基于自适应带宽和权值选择的高空间遥感图像分割均值移位算法","authors":"Qinling Dai, Leiguang Wang, Qizhi Xu, Yun Zhang","doi":"10.1109/IGARSS.2014.6945950","DOIUrl":null,"url":null,"abstract":"An improved mean shift segmentation method featuring adaptive parameter selection is presented in this paper. We associate the bandwidths and weight for each point in a spatial-range feature space with boundary information in an image plane. Varying weight and bandwidth for each pixel are assigned according to a boundary map, which is obtained by learning multiple edge cues. We consider two groups of edge cues and two regressing modules, approach the cue combination as a supervised learning problem from the ground truth data (manually sketched boundary maps). From our preliminary results, the provided method can combine the top-down information got from regression models with the mean shift process and constrain over-clustering of pixels belonging different land objects.","PeriodicalId":385645,"journal":{"name":"2014 IEEE Geoscience and Remote Sensing Symposium","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An mean shift algorithm with adaptive bandwidth and weight selection for high spatial remotely sensed imagery segmentation\",\"authors\":\"Qinling Dai, Leiguang Wang, Qizhi Xu, Yun Zhang\",\"doi\":\"10.1109/IGARSS.2014.6945950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improved mean shift segmentation method featuring adaptive parameter selection is presented in this paper. We associate the bandwidths and weight for each point in a spatial-range feature space with boundary information in an image plane. Varying weight and bandwidth for each pixel are assigned according to a boundary map, which is obtained by learning multiple edge cues. We consider two groups of edge cues and two regressing modules, approach the cue combination as a supervised learning problem from the ground truth data (manually sketched boundary maps). From our preliminary results, the provided method can combine the top-down information got from regression models with the mean shift process and constrain over-clustering of pixels belonging different land objects.\",\"PeriodicalId\":385645,\"journal\":{\"name\":\"2014 IEEE Geoscience and Remote Sensing Symposium\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2014.6945950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2014.6945950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种改进的自适应参数选择的均值偏移分割方法。我们将空间范围特征空间中每个点的带宽和权值与图像平面的边界信息相关联。根据边界图为每个像素分配不同的权重和带宽,边界图是通过学习多个边缘线索获得的。我们考虑了两组边缘线索和两个回归模块,将线索组合作为一个来自地面真值数据(手动绘制的边界图)的监督学习问题来处理。从初步结果来看,该方法可以将回归模型的自顶向下信息与均值漂移过程相结合,并约束不同地物像元的过度聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An mean shift algorithm with adaptive bandwidth and weight selection for high spatial remotely sensed imagery segmentation
An improved mean shift segmentation method featuring adaptive parameter selection is presented in this paper. We associate the bandwidths and weight for each point in a spatial-range feature space with boundary information in an image plane. Varying weight and bandwidth for each pixel are assigned according to a boundary map, which is obtained by learning multiple edge cues. We consider two groups of edge cues and two regressing modules, approach the cue combination as a supervised learning problem from the ground truth data (manually sketched boundary maps). From our preliminary results, the provided method can combine the top-down information got from regression models with the mean shift process and constrain over-clustering of pixels belonging different land objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信