{"title":"自然水分对不同变质程度煤甲烷解吸特征时间的影响","authors":"V. Vasylkivskyi, L. Stefanovich, O. Chesnokova","doi":"10.31474/1999-981X-2020-2-23-32","DOIUrl":null,"url":null,"abstract":"Goal. To study the effect of natural internal moisture content on the kinetics of methane desorption from coals of varying degrees of metamorphization. Methodology. For the research, coal was used after a long (more than 100 days) preliminary exposure in a dry, closed indoors. The measurements were carried out on several samples of Donbass coals with different volatile content. Two groups of coal samples were used - dry, with natural internal humidity and one sample with artificial humidity of 1.5%. The volumetric method was used for measurements. The method includes three stages: 1st saturation of coal with compressed methane, 2nd preliminary discharge of compressed gas from a container with coal after its saturation, and 3rd collection of methane released by coal into a storage vessel. Before registration of desorption, pressurized gas was discharged from the free volume of containers into the atmosphere. The desorption unit contains a low-temperature trap (78°C) for water vapor and a warming radiator for methane entering the storage vessel. To determine the numerical values of the characteristic time of desorption of methane from coal, we used information on the change in gas pressure in the storage vessel during desorption. To analyze the results, a method based on the concept of a change in the characteristic relaxation time of desorption during methane emission was used. Results. Experimental results show that in wet coals the ratio between the amount of methane in coal and the intensity of its outflow at any desorption site is less than in dry coals. It was found that in coals of the metamorphic series the presence of natural moisture leads to a decrease in the intensity of methane emission, a decrease in the characteristic desorption time and a decrease in the activation energy of methane desorption by 0.4 - 2.5 kJ / mol. The features of the kinetics of desorption indicates competition energetics of interactions between methane and water with the surface of the pores of coal. Scientific novelty. It was found that even without artificial humidification, but in the presence of natural internal moisture in coal, the degassing time during desorption is reduced (in comparison with dry coal). Practical significance. The research results can be used to optimize the duration of hydraulic saturation of the coal seam and the water consumption during coal degassing.","PeriodicalId":344647,"journal":{"name":"JOURNAL of Donetsk mining institute","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INFLUENCE OF NATURAL MOISTURE ON THE CHARACTERISTIC TIME OF METHANE DESORPTION FROM COALS OF VARIOUS DEGREES OF METAMORPHISM\",\"authors\":\"V. Vasylkivskyi, L. Stefanovich, O. Chesnokova\",\"doi\":\"10.31474/1999-981X-2020-2-23-32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Goal. To study the effect of natural internal moisture content on the kinetics of methane desorption from coals of varying degrees of metamorphization. Methodology. For the research, coal was used after a long (more than 100 days) preliminary exposure in a dry, closed indoors. The measurements were carried out on several samples of Donbass coals with different volatile content. Two groups of coal samples were used - dry, with natural internal humidity and one sample with artificial humidity of 1.5%. The volumetric method was used for measurements. The method includes three stages: 1st saturation of coal with compressed methane, 2nd preliminary discharge of compressed gas from a container with coal after its saturation, and 3rd collection of methane released by coal into a storage vessel. Before registration of desorption, pressurized gas was discharged from the free volume of containers into the atmosphere. The desorption unit contains a low-temperature trap (78°C) for water vapor and a warming radiator for methane entering the storage vessel. To determine the numerical values of the characteristic time of desorption of methane from coal, we used information on the change in gas pressure in the storage vessel during desorption. To analyze the results, a method based on the concept of a change in the characteristic relaxation time of desorption during methane emission was used. Results. Experimental results show that in wet coals the ratio between the amount of methane in coal and the intensity of its outflow at any desorption site is less than in dry coals. It was found that in coals of the metamorphic series the presence of natural moisture leads to a decrease in the intensity of methane emission, a decrease in the characteristic desorption time and a decrease in the activation energy of methane desorption by 0.4 - 2.5 kJ / mol. The features of the kinetics of desorption indicates competition energetics of interactions between methane and water with the surface of the pores of coal. Scientific novelty. It was found that even without artificial humidification, but in the presence of natural internal moisture in coal, the degassing time during desorption is reduced (in comparison with dry coal). Practical significance. The research results can be used to optimize the duration of hydraulic saturation of the coal seam and the water consumption during coal degassing.\",\"PeriodicalId\":344647,\"journal\":{\"name\":\"JOURNAL of Donetsk mining institute\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL of Donetsk mining institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31474/1999-981X-2020-2-23-32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL of Donetsk mining institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31474/1999-981X-2020-2-23-32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
INFLUENCE OF NATURAL MOISTURE ON THE CHARACTERISTIC TIME OF METHANE DESORPTION FROM COALS OF VARIOUS DEGREES OF METAMORPHISM
Goal. To study the effect of natural internal moisture content on the kinetics of methane desorption from coals of varying degrees of metamorphization. Methodology. For the research, coal was used after a long (more than 100 days) preliminary exposure in a dry, closed indoors. The measurements were carried out on several samples of Donbass coals with different volatile content. Two groups of coal samples were used - dry, with natural internal humidity and one sample with artificial humidity of 1.5%. The volumetric method was used for measurements. The method includes three stages: 1st saturation of coal with compressed methane, 2nd preliminary discharge of compressed gas from a container with coal after its saturation, and 3rd collection of methane released by coal into a storage vessel. Before registration of desorption, pressurized gas was discharged from the free volume of containers into the atmosphere. The desorption unit contains a low-temperature trap (78°C) for water vapor and a warming radiator for methane entering the storage vessel. To determine the numerical values of the characteristic time of desorption of methane from coal, we used information on the change in gas pressure in the storage vessel during desorption. To analyze the results, a method based on the concept of a change in the characteristic relaxation time of desorption during methane emission was used. Results. Experimental results show that in wet coals the ratio between the amount of methane in coal and the intensity of its outflow at any desorption site is less than in dry coals. It was found that in coals of the metamorphic series the presence of natural moisture leads to a decrease in the intensity of methane emission, a decrease in the characteristic desorption time and a decrease in the activation energy of methane desorption by 0.4 - 2.5 kJ / mol. The features of the kinetics of desorption indicates competition energetics of interactions between methane and water with the surface of the pores of coal. Scientific novelty. It was found that even without artificial humidification, but in the presence of natural internal moisture in coal, the degassing time during desorption is reduced (in comparison with dry coal). Practical significance. The research results can be used to optimize the duration of hydraulic saturation of the coal seam and the water consumption during coal degassing.