利用新闻文章预测被迫的人口迁移

Sadra Abrishamkar, Forouq Khonsari
{"title":"利用新闻文章预测被迫的人口迁移","authors":"Sadra Abrishamkar, Forouq Khonsari","doi":"10.5121/MLAIJ.2019.6101","DOIUrl":null,"url":null,"abstract":"The world has witnessed mass forced population displacement across the globe. Population displacement has various indications, with different social and policy consequences. Mitigation of the humanitarian crisis requires tracking and predicting the population movements to allocate the necessary resources and inform the policymakers. The set of events that triggers population movements can be traced in the news articles. In this paper, we propose the Population Displacement-Signal Extraction Framework (PD-SEF) to explore a large news corpus and extract the signals of forced population displacement. PD-SEF measures and evaluates violence signals, which is a critical factor of forced displacement from it. Following signal extraction, we propose a displacement prediction model based on extracted violence scores. Experimental results indicate the effectiveness of our framework in extracting high quality violence scores and building accurate prediction models.","PeriodicalId":347528,"journal":{"name":"Machine Learning and Applications: An International Journal","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Forced Population Displacement Using News Articles\",\"authors\":\"Sadra Abrishamkar, Forouq Khonsari\",\"doi\":\"10.5121/MLAIJ.2019.6101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The world has witnessed mass forced population displacement across the globe. Population displacement has various indications, with different social and policy consequences. Mitigation of the humanitarian crisis requires tracking and predicting the population movements to allocate the necessary resources and inform the policymakers. The set of events that triggers population movements can be traced in the news articles. In this paper, we propose the Population Displacement-Signal Extraction Framework (PD-SEF) to explore a large news corpus and extract the signals of forced population displacement. PD-SEF measures and evaluates violence signals, which is a critical factor of forced displacement from it. Following signal extraction, we propose a displacement prediction model based on extracted violence scores. Experimental results indicate the effectiveness of our framework in extracting high quality violence scores and building accurate prediction models.\",\"PeriodicalId\":347528,\"journal\":{\"name\":\"Machine Learning and Applications: An International Journal\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning and Applications: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/MLAIJ.2019.6101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning and Applications: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/MLAIJ.2019.6101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

世界目睹了全球范围内大规模的人口被迫流离失所。人口流离失所有各种迹象,具有不同的社会和政策后果。缓解人道主义危机需要跟踪和预测人口流动,以便分配必要的资源并向决策者提供信息。引发人口流动的一系列事件可以在新闻文章中找到。在本文中,我们提出了人口迁移-信号提取框架(PD-SEF)来挖掘大型新闻语料库并提取强迫人口迁移的信号。PD-SEF测量和评估暴力信号,这是被迫流离失所的关键因素。在信号提取之后,我们提出了一种基于提取的暴力得分的位移预测模型。实验结果表明,我们的框架在提取高质量的暴力得分和建立准确的预测模型方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Forced Population Displacement Using News Articles
The world has witnessed mass forced population displacement across the globe. Population displacement has various indications, with different social and policy consequences. Mitigation of the humanitarian crisis requires tracking and predicting the population movements to allocate the necessary resources and inform the policymakers. The set of events that triggers population movements can be traced in the news articles. In this paper, we propose the Population Displacement-Signal Extraction Framework (PD-SEF) to explore a large news corpus and extract the signals of forced population displacement. PD-SEF measures and evaluates violence signals, which is a critical factor of forced displacement from it. Following signal extraction, we propose a displacement prediction model based on extracted violence scores. Experimental results indicate the effectiveness of our framework in extracting high quality violence scores and building accurate prediction models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信