{"title":"一个分段的线性相关和简洁的子集取决于k个因素","authors":"E. Ballico","doi":"10.4134/BKMS.B200248","DOIUrl":null,"url":null,"abstract":"We study linearly dependent subsets with prescribed cardinality, $s$, of a multiprojective space. If the set $S$ is a circuit, we give an upper bound on the number of factors of the minimal multiprojective space containing $S$, while if $S$ has higher dependency this may be not true without strong assumptions. We describe the dependent subsets $S$ with $\\#S=6$.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Linearly dependent and concise subsets of a Segre variety depending on k factors\",\"authors\":\"E. Ballico\",\"doi\":\"10.4134/BKMS.B200248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study linearly dependent subsets with prescribed cardinality, $s$, of a multiprojective space. If the set $S$ is a circuit, we give an upper bound on the number of factors of the minimal multiprojective space containing $S$, while if $S$ has higher dependency this may be not true without strong assumptions. We describe the dependent subsets $S$ with $\\\\#S=6$.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4134/BKMS.B200248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/BKMS.B200248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Linearly dependent and concise subsets of a Segre variety depending on k factors
We study linearly dependent subsets with prescribed cardinality, $s$, of a multiprojective space. If the set $S$ is a circuit, we give an upper bound on the number of factors of the minimal multiprojective space containing $S$, while if $S$ has higher dependency this may be not true without strong assumptions. We describe the dependent subsets $S$ with $\#S=6$.