微电网电能质量的精确监测

Zhichuan Huang, Ting Zhu, Haoyang Lu, Wei Gao
{"title":"微电网电能质量的精确监测","authors":"Zhichuan Huang, Ting Zhu, Haoyang Lu, Wei Gao","doi":"10.1109/IPSN.2016.7460660","DOIUrl":null,"url":null,"abstract":"Traditional power grid is not resistant to severe weather conditions, especially in remote areas. For some areas with few people, such as islands, it is difficult and expensive to maintain their connectivity to the traditional power grid. Therefore, a self-sustainable microgrid is desired. However, given the limited local energy storage and energy generation, it is extremely challenging for a microgrid to balance the power demand and generation in real-time. To realize the real-time power quality monitoring, the power quality information of microgrid, such as voltage, frequency and phase angle in each home, needs to be collected in real- time. Furthermore, the unreliable sensing results and data collection in a microgrid make the real-time data collection more difficult. To address these challenges, we designed an accurate real-time power quality data sensing hardware to sense the voltage, frequency and phase angle in each home. A novel data management technique is also proposed to reconstruct the missing data caused by unreliable sensing. We implemented our system over off-the-shelf smartphones with a few peripheral hardware components, and realized an accuracy of 1.7 mHz and 0.01 rad for frequency and phase angle monitoring, respectively. We also show our data management technique can reconstruct the missing data with more than 99% accuracy.","PeriodicalId":137855,"journal":{"name":"2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Accurate Power Quality Monitoring in Microgrids\",\"authors\":\"Zhichuan Huang, Ting Zhu, Haoyang Lu, Wei Gao\",\"doi\":\"10.1109/IPSN.2016.7460660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional power grid is not resistant to severe weather conditions, especially in remote areas. For some areas with few people, such as islands, it is difficult and expensive to maintain their connectivity to the traditional power grid. Therefore, a self-sustainable microgrid is desired. However, given the limited local energy storage and energy generation, it is extremely challenging for a microgrid to balance the power demand and generation in real-time. To realize the real-time power quality monitoring, the power quality information of microgrid, such as voltage, frequency and phase angle in each home, needs to be collected in real- time. Furthermore, the unreliable sensing results and data collection in a microgrid make the real-time data collection more difficult. To address these challenges, we designed an accurate real-time power quality data sensing hardware to sense the voltage, frequency and phase angle in each home. A novel data management technique is also proposed to reconstruct the missing data caused by unreliable sensing. We implemented our system over off-the-shelf smartphones with a few peripheral hardware components, and realized an accuracy of 1.7 mHz and 0.01 rad for frequency and phase angle monitoring, respectively. We also show our data management technique can reconstruct the missing data with more than 99% accuracy.\",\"PeriodicalId\":137855,\"journal\":{\"name\":\"2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPSN.2016.7460660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPSN.2016.7460660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

传统的电网不能抵抗恶劣的天气条件,特别是在偏远地区。对于一些人口稀少的地区,如岛屿,维持与传统电网的连接是困难和昂贵的。因此,需要一个自我可持续的微电网。然而,由于局部储能和发电量有限,微电网要实现电力需求和发电量的实时平衡是极具挑战性的。为了实现实时电能质量监测,需要实时采集各家庭微电网的电压、频率、相位角等电能质量信息。此外,微电网的传感结果和数据采集不可靠,增加了实时数据采集的难度。为了应对这些挑战,我们设计了一个精确的实时电能质量数据传感硬件,以感知每个家庭的电压,频率和相位角。提出了一种新的数据管理技术,用于重建由于传感不可靠而导致的数据缺失。我们在现有的智能手机上使用了一些外围硬件组件实现了我们的系统,分别实现了1.7 mHz和0.01 rad的频率和相位角监测精度。我们的数据管理技术可以以99%以上的准确率重建缺失数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate Power Quality Monitoring in Microgrids
Traditional power grid is not resistant to severe weather conditions, especially in remote areas. For some areas with few people, such as islands, it is difficult and expensive to maintain their connectivity to the traditional power grid. Therefore, a self-sustainable microgrid is desired. However, given the limited local energy storage and energy generation, it is extremely challenging for a microgrid to balance the power demand and generation in real-time. To realize the real-time power quality monitoring, the power quality information of microgrid, such as voltage, frequency and phase angle in each home, needs to be collected in real- time. Furthermore, the unreliable sensing results and data collection in a microgrid make the real-time data collection more difficult. To address these challenges, we designed an accurate real-time power quality data sensing hardware to sense the voltage, frequency and phase angle in each home. A novel data management technique is also proposed to reconstruct the missing data caused by unreliable sensing. We implemented our system over off-the-shelf smartphones with a few peripheral hardware components, and realized an accuracy of 1.7 mHz and 0.01 rad for frequency and phase angle monitoring, respectively. We also show our data management technique can reconstruct the missing data with more than 99% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信