{"title":"CFL夸克物质中的多绕组磁通管","authors":"A. Haber, A. Schmitt","doi":"10.22323/1.336.0213","DOIUrl":null,"url":null,"abstract":"Color-flavor locked quark matter can be described as a three-component superconductor and thus shows unconventional behavior in the transition regime from type-I to type-II superconductivity. We discuss this behavior by studying magnetic line defects in a Ginzburg-Landau approach, taking into account all possible values of the three winding numbers. After a brief discussion of the defects that include baryon circulation we focus on pure magnetic flux tubes. We show that at strong coupling, relevant for neutron stars, type-II behavior is conceivable and the most preferred configuration has minimal total winding. Only at weak coupling we find a regime where multi-winding flux tubes are preferred, although this regime most likely requires an unrealistically large superconducting gap.","PeriodicalId":441384,"journal":{"name":"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-winding flux tubes in CFL quark matter\",\"authors\":\"A. Haber, A. Schmitt\",\"doi\":\"10.22323/1.336.0213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Color-flavor locked quark matter can be described as a three-component superconductor and thus shows unconventional behavior in the transition regime from type-I to type-II superconductivity. We discuss this behavior by studying magnetic line defects in a Ginzburg-Landau approach, taking into account all possible values of the three winding numbers. After a brief discussion of the defects that include baryon circulation we focus on pure magnetic flux tubes. We show that at strong coupling, relevant for neutron stars, type-II behavior is conceivable and the most preferred configuration has minimal total winding. Only at weak coupling we find a regime where multi-winding flux tubes are preferred, although this regime most likely requires an unrealistically large superconducting gap.\",\"PeriodicalId\":441384,\"journal\":{\"name\":\"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.336.0213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.336.0213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Color-flavor locked quark matter can be described as a three-component superconductor and thus shows unconventional behavior in the transition regime from type-I to type-II superconductivity. We discuss this behavior by studying magnetic line defects in a Ginzburg-Landau approach, taking into account all possible values of the three winding numbers. After a brief discussion of the defects that include baryon circulation we focus on pure magnetic flux tubes. We show that at strong coupling, relevant for neutron stars, type-II behavior is conceivable and the most preferred configuration has minimal total winding. Only at weak coupling we find a regime where multi-winding flux tubes are preferred, although this regime most likely requires an unrealistically large superconducting gap.