Luis Martínez, María Asunción García, Leire Legarreta, I. Malaina
{"title":"广泛类别的环切关联方案及其在组合结构构造中的应用","authors":"Luis Martínez, María Asunción García, Leire Legarreta, I. Malaina","doi":"10.26493/2590-9770.1436.0f3","DOIUrl":null,"url":null,"abstract":"In 2010, G. Fernández, R. Kwashira and L. Mart́ınez gave a new cyclotomy on A = ∏n i=1 Fqi , where Fqi is a finite field with qi elements. They defined a certain subgroup H of the group of units of this product ring A for which the quotient is cyclic. The orbits of the corresponding multiplicative action of the subgroup on the additive group of A are of two types: • The cyclotomic cosets of the quotient of the group of units of A over the subgroup H.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"51 1-3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cyclotomic association schemes of broad classes and applications to the construction of combinatorial structures\",\"authors\":\"Luis Martínez, María Asunción García, Leire Legarreta, I. Malaina\",\"doi\":\"10.26493/2590-9770.1436.0f3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2010, G. Fernández, R. Kwashira and L. Mart́ınez gave a new cyclotomy on A = ∏n i=1 Fqi , where Fqi is a finite field with qi elements. They defined a certain subgroup H of the group of units of this product ring A for which the quotient is cyclic. The orbits of the corresponding multiplicative action of the subgroup on the additive group of A are of two types: • The cyclotomic cosets of the quotient of the group of units of A over the subgroup H.\",\"PeriodicalId\":236892,\"journal\":{\"name\":\"Art Discret. Appl. Math.\",\"volume\":\"51 1-3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art Discret. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1436.0f3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1436.0f3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
2010年,G. Fernández, R. Kwashira和L. Mart ' ınez在a =∏n i=1 Fqi上给出了一个新的环切割术,其中Fqi是一个具有气元素的有限域。他们在这个积环a的单位群中定义了一个子群H,它的商是环的。子群在A的加性群上对应的乘法作用的轨道有两种类型:•A的单位群在子群H上的商的环切旁集。
Cyclotomic association schemes of broad classes and applications to the construction of combinatorial structures
In 2010, G. Fernández, R. Kwashira and L. Mart́ınez gave a new cyclotomy on A = ∏n i=1 Fqi , where Fqi is a finite field with qi elements. They defined a certain subgroup H of the group of units of this product ring A for which the quotient is cyclic. The orbits of the corresponding multiplicative action of the subgroup on the additive group of A are of two types: • The cyclotomic cosets of the quotient of the group of units of A over the subgroup H.