用于形状测量和识别的像素级统计结构描述符

Jing Zhang, Wenyin Liu
{"title":"用于形状测量和识别的像素级统计结构描述符","authors":"Jing Zhang, Wenyin Liu","doi":"10.1109/ICDAR.2009.175","DOIUrl":null,"url":null,"abstract":"A novel shape descriptor based on the histogram matrix of pixel-level structural features is presented. First, length ratios and angles between the centroid and contour points of a shape are calculated as two structural attributes. Then, the attributes are combined to construct a new histogram matrix in the feature space statistically. The proposed shape descriptor can measure circularity, smoothness, and symmetry of shapes, and be used to recognize shapes. Experimental results demonstrate the effectiveness of our method.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A Pixel-level Statistical Structural Descriptor for Shape Measure and Recognition\",\"authors\":\"Jing Zhang, Wenyin Liu\",\"doi\":\"10.1109/ICDAR.2009.175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel shape descriptor based on the histogram matrix of pixel-level structural features is presented. First, length ratios and angles between the centroid and contour points of a shape are calculated as two structural attributes. Then, the attributes are combined to construct a new histogram matrix in the feature space statistically. The proposed shape descriptor can measure circularity, smoothness, and symmetry of shapes, and be used to recognize shapes. Experimental results demonstrate the effectiveness of our method.\",\"PeriodicalId\":433762,\"journal\":{\"name\":\"2009 10th International Conference on Document Analysis and Recognition\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 10th International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2009.175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

提出了一种基于像素级结构特征直方图矩阵的形状描述符。首先,计算形状质心与轮廓点之间的长度比和角度作为两个结构属性。然后,对这些属性进行组合,在特征空间中统计构造新的直方图矩阵。所提出的形状描述符可以测量形状的圆度、平滑度和对称性,并用于形状识别。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Pixel-level Statistical Structural Descriptor for Shape Measure and Recognition
A novel shape descriptor based on the histogram matrix of pixel-level structural features is presented. First, length ratios and angles between the centroid and contour points of a shape are calculated as two structural attributes. Then, the attributes are combined to construct a new histogram matrix in the feature space statistically. The proposed shape descriptor can measure circularity, smoothness, and symmetry of shapes, and be used to recognize shapes. Experimental results demonstrate the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信