光学弦图

G. Boisseau
{"title":"光学弦图","authors":"G. Boisseau","doi":"10.4230/LIPIcs.FSCD.2020.17","DOIUrl":null,"url":null,"abstract":"Optics are a data representation for compositional data access, with lenses as a popular special case. Hedges has presented a diagrammatic calculus for lenses, but in a way that does not generalize to other classes of optic. We present a calculus that works for all optics, not just lenses; this is done by embedding optics into their presheaf category, which naturally features string diagrams. We apply our calculus to the common case of lenses, extend it to effectful lenses, and explore how the laws of optics manifest in this setting.","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"String Diagrams for Optics\",\"authors\":\"G. Boisseau\",\"doi\":\"10.4230/LIPIcs.FSCD.2020.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optics are a data representation for compositional data access, with lenses as a popular special case. Hedges has presented a diagrammatic calculus for lenses, but in a way that does not generalize to other classes of optic. We present a calculus that works for all optics, not just lenses; this is done by embedding optics into their presheaf category, which naturally features string diagrams. We apply our calculus to the common case of lenses, extend it to effectful lenses, and explore how the laws of optics manifest in this setting.\",\"PeriodicalId\":284975,\"journal\":{\"name\":\"International Conference on Formal Structures for Computation and Deduction\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Formal Structures for Computation and Deduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.FSCD.2020.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSCD.2020.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

光学是组合数据访问的一种数据表示,透镜是一种流行的特殊情况。赫奇斯提出了透镜的图解演算,但在某种程度上不能推广到其他类型的光学。我们提出的微积分适用于所有光学器件,而不仅仅是透镜;这是通过将光学嵌入到它们的presheaf类别中来实现的,这自然以弦图为特征。我们将微积分应用于透镜的常见情况,并将其扩展到有效透镜,并探索光学定律如何在这种情况下体现出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
String Diagrams for Optics
Optics are a data representation for compositional data access, with lenses as a popular special case. Hedges has presented a diagrammatic calculus for lenses, but in a way that does not generalize to other classes of optic. We present a calculus that works for all optics, not just lenses; this is done by embedding optics into their presheaf category, which naturally features string diagrams. We apply our calculus to the common case of lenses, extend it to effectful lenses, and explore how the laws of optics manifest in this setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信