如何划分十亿节点图

Lu Wang, Yanghua Xiao, Bin Shao, Haixun Wang
{"title":"如何划分十亿节点图","authors":"Lu Wang, Yanghua Xiao, Bin Shao, Haixun Wang","doi":"10.1109/ICDE.2014.6816682","DOIUrl":null,"url":null,"abstract":"Billion-node graphs pose significant challenges at all levels from storage infrastructures to programming models. It is critical to develop a general purpose platform for graph processing. A distributed memory system is considered a feasible platform supporting online query processing as well as offline graph analytics. In this paper, we study the problem of partitioning a billion-node graph on such a platform, an important consideration because it has direct impact on load balancing and communication overhead. It is challenging not just because the graph is large, but because we can no longer assume that the data can be organized in arbitrary ways to maximize the performance of the partitioning algorithm. Instead, the algorithm must adopt the same data and programming model adopted by the system and other applications. In this paper, we propose a multi-level label propagation (MLP) method for graph partitioning. Experimental results show that our solution can partition billion-node graphs within several hours on a distributed memory system consisting of merely several machines, and the quality of the partitions produced by our approach is comparable to state-of-the-art approaches applied on toy-size graphs.","PeriodicalId":159130,"journal":{"name":"2014 IEEE 30th International Conference on Data Engineering","volume":"305 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":"{\"title\":\"How to partition a billion-node graph\",\"authors\":\"Lu Wang, Yanghua Xiao, Bin Shao, Haixun Wang\",\"doi\":\"10.1109/ICDE.2014.6816682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Billion-node graphs pose significant challenges at all levels from storage infrastructures to programming models. It is critical to develop a general purpose platform for graph processing. A distributed memory system is considered a feasible platform supporting online query processing as well as offline graph analytics. In this paper, we study the problem of partitioning a billion-node graph on such a platform, an important consideration because it has direct impact on load balancing and communication overhead. It is challenging not just because the graph is large, but because we can no longer assume that the data can be organized in arbitrary ways to maximize the performance of the partitioning algorithm. Instead, the algorithm must adopt the same data and programming model adopted by the system and other applications. In this paper, we propose a multi-level label propagation (MLP) method for graph partitioning. Experimental results show that our solution can partition billion-node graphs within several hours on a distributed memory system consisting of merely several machines, and the quality of the partitions produced by our approach is comparable to state-of-the-art approaches applied on toy-size graphs.\",\"PeriodicalId\":159130,\"journal\":{\"name\":\"2014 IEEE 30th International Conference on Data Engineering\",\"volume\":\"305 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"115\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 30th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2014.6816682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 30th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2014.6816682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 115

摘要

从存储基础设施到编程模型,十亿节点图在所有级别都提出了重大挑战。开发一个通用的图形处理平台是至关重要的。分布式内存系统被认为是支持在线查询处理和离线图形分析的可行平台。在本文中,我们研究了在这样一个平台上划分十亿节点图的问题,这是一个重要的考虑,因为它直接影响到负载平衡和通信开销。它具有挑战性不仅仅是因为图很大,还因为我们不能再假设数据可以以任意方式组织以最大化分区算法的性能。相反,该算法必须采用与系统和其他应用程序采用的相同的数据和编程模型。本文提出了一种多层次标签传播(MLP)的图划分方法。实验结果表明,我们的解决方案可以在几个小时内在仅由几台机器组成的分布式内存系统上对十亿节点图进行分区,并且我们的方法产生的分区质量与应用于玩具大小图的最先进方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to partition a billion-node graph
Billion-node graphs pose significant challenges at all levels from storage infrastructures to programming models. It is critical to develop a general purpose platform for graph processing. A distributed memory system is considered a feasible platform supporting online query processing as well as offline graph analytics. In this paper, we study the problem of partitioning a billion-node graph on such a platform, an important consideration because it has direct impact on load balancing and communication overhead. It is challenging not just because the graph is large, but because we can no longer assume that the data can be organized in arbitrary ways to maximize the performance of the partitioning algorithm. Instead, the algorithm must adopt the same data and programming model adopted by the system and other applications. In this paper, we propose a multi-level label propagation (MLP) method for graph partitioning. Experimental results show that our solution can partition billion-node graphs within several hours on a distributed memory system consisting of merely several machines, and the quality of the partitions produced by our approach is comparable to state-of-the-art approaches applied on toy-size graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信