2016年多类型广播挑战赛的NDSC转录系统

Xukui Yang, Dan Qu, Wenlin Zhang, Weiqiang Zhang
{"title":"2016年多类型广播挑战赛的NDSC转录系统","authors":"Xukui Yang, Dan Qu, Wenlin Zhang, Weiqiang Zhang","doi":"10.1109/SLT.2016.7846276","DOIUrl":null,"url":null,"abstract":"The National Digital Switching System Engineering and Technological R&D Center (NDSC) speech-to-text transcription system for the 2016 multi-genre broadcast challenge is described. Various acoustic models based on deep neural network (DNN), such as hybrid DNN, long short term memory recurrent neural network (LSTM RNN), and time delay neural network (TDNN), are trained. The system also makes use of recurrent neural network language models (RNNLMs) for re-scoring and minimum Bayes risk (MBR) combination. The WER on test dataset of the speech-to-text task is 18.2%. Furthermore, to simulate real applications where manual segmentations were not available an automatic segmentation system based on long-term information is proposed. WERs based on the automatically generated segments were slightly worse than that based on the manual segmentations.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The NDSC transcription system for the 2016 multi-genre broadcast challenge\",\"authors\":\"Xukui Yang, Dan Qu, Wenlin Zhang, Weiqiang Zhang\",\"doi\":\"10.1109/SLT.2016.7846276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The National Digital Switching System Engineering and Technological R&D Center (NDSC) speech-to-text transcription system for the 2016 multi-genre broadcast challenge is described. Various acoustic models based on deep neural network (DNN), such as hybrid DNN, long short term memory recurrent neural network (LSTM RNN), and time delay neural network (TDNN), are trained. The system also makes use of recurrent neural network language models (RNNLMs) for re-scoring and minimum Bayes risk (MBR) combination. The WER on test dataset of the speech-to-text task is 18.2%. Furthermore, to simulate real applications where manual segmentations were not available an automatic segmentation system based on long-term information is proposed. WERs based on the automatically generated segments were slightly worse than that based on the manual segmentations.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

介绍了国家数字交换系统工程与技术研发中心(NDSC)针对2016年多类型广播挑战赛的语音转文本转录系统。基于深度神经网络(DNN)的各种声学模型,如混合深度神经网络、长短期记忆递归神经网络(LSTM RNN)和时滞神经网络(TDNN)进行了训练。该系统还利用递归神经网络语言模型(RNNLMs)进行重新评分和最小贝叶斯风险(MBR)组合。语音转文本任务测试数据集上的WER为18.2%。在此基础上,针对无法进行人工分割的实际应用,提出了一种基于长时信息的自动分割系统。基于自动生成分段的wer略差于基于手动分段的wer。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The NDSC transcription system for the 2016 multi-genre broadcast challenge
The National Digital Switching System Engineering and Technological R&D Center (NDSC) speech-to-text transcription system for the 2016 multi-genre broadcast challenge is described. Various acoustic models based on deep neural network (DNN), such as hybrid DNN, long short term memory recurrent neural network (LSTM RNN), and time delay neural network (TDNN), are trained. The system also makes use of recurrent neural network language models (RNNLMs) for re-scoring and minimum Bayes risk (MBR) combination. The WER on test dataset of the speech-to-text task is 18.2%. Furthermore, to simulate real applications where manual segmentations were not available an automatic segmentation system based on long-term information is proposed. WERs based on the automatically generated segments were slightly worse than that based on the manual segmentations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信