面向对象的视频搜索查询分析

Jingjing Liu, Xiansheng Hua, Shipeng Li
{"title":"面向对象的视频搜索查询分析","authors":"Jingjing Liu, Xiansheng Hua, Shipeng Li","doi":"10.1109/MMSP.2007.4412891","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the problem of improving the performance of text search baseline in video retrieval, specifically for the search tasks in TRECVID. Given a query in plain text, we first implement syntactic segmentation and semantic expansion of the query, then identify the underlying \"targeted objects\" which should appear in the retrieved video shots, and scale up the weights of the video shots retrieved by the query terms that represent these targeted objects. We name the approaches as \"object-sensitive query analysis\" for video search. Specifically, we propose a set of methods to identify the specific terms representing the \"targeted objects\" in a video search query, and a modified object-centric BM25 algorithm to emphasize the impact of these specific object-terms. In practice, we place the process of object-sensitive query analysis before the text search stage, and verify the effectiveness of the proposed approaches with the TRECVID 2005 and 2006 datasets. The experimental results indicate that the proposed object-sensitive approaches to query analysis bring significant improvement upon the raw text search baseline of video search.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Object-Sensitive Query Analysis for Video Search\",\"authors\":\"Jingjing Liu, Xiansheng Hua, Shipeng Li\",\"doi\":\"10.1109/MMSP.2007.4412891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the problem of improving the performance of text search baseline in video retrieval, specifically for the search tasks in TRECVID. Given a query in plain text, we first implement syntactic segmentation and semantic expansion of the query, then identify the underlying \\\"targeted objects\\\" which should appear in the retrieved video shots, and scale up the weights of the video shots retrieved by the query terms that represent these targeted objects. We name the approaches as \\\"object-sensitive query analysis\\\" for video search. Specifically, we propose a set of methods to identify the specific terms representing the \\\"targeted objects\\\" in a video search query, and a modified object-centric BM25 algorithm to emphasize the impact of these specific object-terms. In practice, we place the process of object-sensitive query analysis before the text search stage, and verify the effectiveness of the proposed approaches with the TRECVID 2005 and 2006 datasets. The experimental results indicate that the proposed object-sensitive approaches to query analysis bring significant improvement upon the raw text search baseline of video search.\",\"PeriodicalId\":225295,\"journal\":{\"name\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2007.4412891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文主要研究如何提高文本搜索基线在视频检索中的性能,特别是针对TRECVID中的搜索任务。给定纯文本查询,我们首先实现查询的语法分割和语义扩展,然后识别应该出现在检索视频镜头中的底层“目标对象”,并按比例放大代表这些目标对象的查询词检索到的视频镜头的权重。我们将这种方法命名为视频搜索的“对象敏感查询分析”。具体来说,我们提出了一组方法来识别视频搜索查询中代表“目标对象”的特定术语,并提出了一种改进的以对象为中心的BM25算法来强调这些特定对象术语的影响。在实践中,我们将对象敏感查询分析过程置于文本搜索阶段之前,并使用TRECVID 2005和2006数据集验证了所提出方法的有效性。实验结果表明,本文提出的对象敏感查询分析方法对视频搜索的原始文本搜索基线有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object-Sensitive Query Analysis for Video Search
This paper is concerned with the problem of improving the performance of text search baseline in video retrieval, specifically for the search tasks in TRECVID. Given a query in plain text, we first implement syntactic segmentation and semantic expansion of the query, then identify the underlying "targeted objects" which should appear in the retrieved video shots, and scale up the weights of the video shots retrieved by the query terms that represent these targeted objects. We name the approaches as "object-sensitive query analysis" for video search. Specifically, we propose a set of methods to identify the specific terms representing the "targeted objects" in a video search query, and a modified object-centric BM25 algorithm to emphasize the impact of these specific object-terms. In practice, we place the process of object-sensitive query analysis before the text search stage, and verify the effectiveness of the proposed approaches with the TRECVID 2005 and 2006 datasets. The experimental results indicate that the proposed object-sensitive approaches to query analysis bring significant improvement upon the raw text search baseline of video search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信