使用余弦相似度度量降低精度的语义向量的比较

Michał Karwatowski, M. Wielgosz, M. Pietroń, Mateusz Staruchowicz, K. Wiatr
{"title":"使用余弦相似度度量降低精度的语义向量的比较","authors":"Michał Karwatowski, M. Wielgosz, M. Pietroń, Mateusz Staruchowicz, K. Wiatr","doi":"10.1109/INTELLISYS.2017.8324236","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis of an impact of a precision reduction on a performance of the cosine similarity measure in a document comparison task. The precision reduction of semantic vectors allows for a substantial computing performance improvement at the expense of a negligible decline of a comparison quality. In order to take an advantage of the precision reduction in terms of a lower number of bits, a dedicated hardware platforms are essential. Consequently, we proposed an FPGA-based hardware solution and examined its performance. In order to validate the adopted method of the precision reduction we also created the quality assessment setup. This allowed us to determine that it is possible to decrease a vector precision down to 8 bits and still maintain 0.99 correlation of the regular and reduced results. This is feasible for a wide range of data set sizes.","PeriodicalId":131825,"journal":{"name":"2017 Intelligent Systems Conference (IntelliSys)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of semantic vectors with reduced precision using the cosine similarity measure\",\"authors\":\"Michał Karwatowski, M. Wielgosz, M. Pietroń, Mateusz Staruchowicz, K. Wiatr\",\"doi\":\"10.1109/INTELLISYS.2017.8324236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an analysis of an impact of a precision reduction on a performance of the cosine similarity measure in a document comparison task. The precision reduction of semantic vectors allows for a substantial computing performance improvement at the expense of a negligible decline of a comparison quality. In order to take an advantage of the precision reduction in terms of a lower number of bits, a dedicated hardware platforms are essential. Consequently, we proposed an FPGA-based hardware solution and examined its performance. In order to validate the adopted method of the precision reduction we also created the quality assessment setup. This allowed us to determine that it is possible to decrease a vector precision down to 8 bits and still maintain 0.99 correlation of the regular and reduced results. This is feasible for a wide range of data set sizes.\",\"PeriodicalId\":131825,\"journal\":{\"name\":\"2017 Intelligent Systems Conference (IntelliSys)\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Intelligent Systems Conference (IntelliSys)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTELLISYS.2017.8324236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Intelligent Systems Conference (IntelliSys)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELLISYS.2017.8324236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文分析了在文档比较任务中精度降低对余弦相似度度量性能的影响。语义向量的精度降低使得计算性能有了很大的提高,但代价是比较质量的下降可以忽略不计。为了利用较低位数的精度降低,专用的硬件平台是必不可少的。因此,我们提出了一个基于fpga的硬件解决方案,并对其性能进行了测试。为了验证所采用的降精度方法,我们还建立了质量评估设置。这使我们确定有可能将矢量精度降低到8位,并且仍然保持常规结果和简化结果的0.99相关性。这对于大范围的数据集大小是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of semantic vectors with reduced precision using the cosine similarity measure
This paper presents an analysis of an impact of a precision reduction on a performance of the cosine similarity measure in a document comparison task. The precision reduction of semantic vectors allows for a substantial computing performance improvement at the expense of a negligible decline of a comparison quality. In order to take an advantage of the precision reduction in terms of a lower number of bits, a dedicated hardware platforms are essential. Consequently, we proposed an FPGA-based hardware solution and examined its performance. In order to validate the adopted method of the precision reduction we also created the quality assessment setup. This allowed us to determine that it is possible to decrease a vector precision down to 8 bits and still maintain 0.99 correlation of the regular and reduced results. This is feasible for a wide range of data set sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信