射频指纹识别的复杂神经网络

J. Stankowicz, Josh Robinson, Joseph M. Carmack, Scott Kuzdeba
{"title":"射频指纹识别的复杂神经网络","authors":"J. Stankowicz, Josh Robinson, Joseph M. Carmack, Scott Kuzdeba","doi":"10.1109/WNYIPW.2019.8923089","DOIUrl":null,"url":null,"abstract":"We use deep learning to design a radio frequency (RF) fingerprint algorithm that takes complex-valued wireless signals as input, and outputs the identity of the device that transmitted the signal. We study how performance accuracy varies due to changes in input representation, choices of labels, and treatment of complex values. We report sensitivity to number of devices, training set size, signal-to-noise ratio, and environmental channel. Training data are real-time transmissions from thousands of devices.","PeriodicalId":275099,"journal":{"name":"2019 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Complex Neural Networks for Radio Frequency Fingerprinting\",\"authors\":\"J. Stankowicz, Josh Robinson, Joseph M. Carmack, Scott Kuzdeba\",\"doi\":\"10.1109/WNYIPW.2019.8923089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use deep learning to design a radio frequency (RF) fingerprint algorithm that takes complex-valued wireless signals as input, and outputs the identity of the device that transmitted the signal. We study how performance accuracy varies due to changes in input representation, choices of labels, and treatment of complex values. We report sensitivity to number of devices, training set size, signal-to-noise ratio, and environmental channel. Training data are real-time transmissions from thousands of devices.\",\"PeriodicalId\":275099,\"journal\":{\"name\":\"2019 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WNYIPW.2019.8923089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNYIPW.2019.8923089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们使用深度学习设计了一种射频(RF)指纹算法,该算法将复值无线信号作为输入,并输出传输信号的设备的身份。我们研究了由于输入表示、标签选择和复杂值处理的变化而导致的性能准确性变化。我们报告了对设备数量、训练集大小、信噪比和环境信道的敏感性。训练数据是来自数千台设备的实时传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex Neural Networks for Radio Frequency Fingerprinting
We use deep learning to design a radio frequency (RF) fingerprint algorithm that takes complex-valued wireless signals as input, and outputs the identity of the device that transmitted the signal. We study how performance accuracy varies due to changes in input representation, choices of labels, and treatment of complex values. We report sensitivity to number of devices, training set size, signal-to-noise ratio, and environmental channel. Training data are real-time transmissions from thousands of devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信