电子封装合格测试的测试时间压缩:一个案例研究

T. P. Rothman, A. Dasgupta, J.M. Hu
{"title":"电子封装合格测试的测试时间压缩:一个案例研究","authors":"T. P. Rothman, A. Dasgupta, J.M. Hu","doi":"10.1109/RAMS.1995.513253","DOIUrl":null,"url":null,"abstract":"This paper illustrates a methodology for using physics-of-failure models to extract acceleration transform information from limited test data under accelerated stresses. Test time compression is achieved by appropriately accelerating the stress levels in order to obtain accurate information on reliability. The critical variables are identified and their influence on the stress magnitude is quantified using physics-of-failure models. The total amount of testing time is minimized by tailoring the critical variables in each sample such that multiple stress levels can be achieved in the samples under a single loading. This type of parametric-accelerated test eliminates the need for repeating the test at multiple load levels. Such techniques are essential for cost effective and timely qualification testing of highly reliable modules under accelerated stresses. All sources of error due to experimental variables and assumptions or simplifications in the analytical model are closely examined and discussed. Future work will employ a more detailed physics-of-failure model to quantify the experimental results. These test results also validate physics-of-failure models for acceleration transforms which relate test data to field reliability. Analytical predictive models for acceleration transforms will obviously result in significant savings of cost and time during qualification.","PeriodicalId":143102,"journal":{"name":"Annual Reliability and Maintainability Symposium 1995 Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Test-time compression for qualification testing of electronic packages: a case study\",\"authors\":\"T. P. Rothman, A. Dasgupta, J.M. Hu\",\"doi\":\"10.1109/RAMS.1995.513253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper illustrates a methodology for using physics-of-failure models to extract acceleration transform information from limited test data under accelerated stresses. Test time compression is achieved by appropriately accelerating the stress levels in order to obtain accurate information on reliability. The critical variables are identified and their influence on the stress magnitude is quantified using physics-of-failure models. The total amount of testing time is minimized by tailoring the critical variables in each sample such that multiple stress levels can be achieved in the samples under a single loading. This type of parametric-accelerated test eliminates the need for repeating the test at multiple load levels. Such techniques are essential for cost effective and timely qualification testing of highly reliable modules under accelerated stresses. All sources of error due to experimental variables and assumptions or simplifications in the analytical model are closely examined and discussed. Future work will employ a more detailed physics-of-failure model to quantify the experimental results. These test results also validate physics-of-failure models for acceleration transforms which relate test data to field reliability. Analytical predictive models for acceleration transforms will obviously result in significant savings of cost and time during qualification.\",\"PeriodicalId\":143102,\"journal\":{\"name\":\"Annual Reliability and Maintainability Symposium 1995 Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Reliability and Maintainability Symposium 1995 Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMS.1995.513253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reliability and Maintainability Symposium 1995 Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS.1995.513253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文阐述了一种利用失效物理模型从有限的加速应力试验数据中提取加速度变换信息的方法。测试时间压缩是通过适当加速应力水平来实现的,以便获得准确的可靠性信息。确定了关键变量,并利用破坏物理模型量化了它们对应力大小的影响。通过裁剪每个样品中的关键变量,使单个负载下的样品中可以达到多个应力水平,从而最大限度地减少了测试时间的总量。这种类型的参数加速测试消除了在多个负载水平上重复测试的需要。这些技术对于高可靠性模块在加速应力下的成本效益和及时的资格测试至关重要。所有由于实验变量和分析模型中的假设或简化而引起的误差来源都被仔细检查和讨论。未来的工作将采用更详细的失效物理模型来量化实验结果。这些测试结果还验证了加速转换的失效物理模型,该模型将测试数据与现场可靠性联系起来。加速度变换的分析预测模型将在验证过程中显著节省成本和时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Test-time compression for qualification testing of electronic packages: a case study
This paper illustrates a methodology for using physics-of-failure models to extract acceleration transform information from limited test data under accelerated stresses. Test time compression is achieved by appropriately accelerating the stress levels in order to obtain accurate information on reliability. The critical variables are identified and their influence on the stress magnitude is quantified using physics-of-failure models. The total amount of testing time is minimized by tailoring the critical variables in each sample such that multiple stress levels can be achieved in the samples under a single loading. This type of parametric-accelerated test eliminates the need for repeating the test at multiple load levels. Such techniques are essential for cost effective and timely qualification testing of highly reliable modules under accelerated stresses. All sources of error due to experimental variables and assumptions or simplifications in the analytical model are closely examined and discussed. Future work will employ a more detailed physics-of-failure model to quantify the experimental results. These test results also validate physics-of-failure models for acceleration transforms which relate test data to field reliability. Analytical predictive models for acceleration transforms will obviously result in significant savings of cost and time during qualification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信