基于强化学习的多目标无线电资源切片管理

A. Kattepur, S. David, S. Mohalik
{"title":"基于强化学习的多目标无线电资源切片管理","authors":"A. Kattepur, S. David, S. Mohalik","doi":"10.1109/NetSoft54395.2022.9844041","DOIUrl":null,"url":null,"abstract":"5G Radio Access Network (RAN) slicing concerns strategies to share radio resources while guaranteeing differentiated service requirements. Current state of the art approaches make use of strict isolation or dedicated RAN physical resource block (PRB) partitioning among slices to ensure differentiated services. However, spectrum multiplexing may be rendered suboptimal due to isolation of resources; it further cannot handle variations in traffic patterns or intents in a dynamic way. In this paper, we propose a flexible multi-service partitioning strategy that can balance functional isolation and optimal sharing of resources. This system, called Muesli: Multi-objective Radio Resource Slice Management, makes use of model-based reinforcement learning techniques to dynamically modify PRB partitions. The reinforcement learning reward structure ensures that the system is trained to meet multiple objectives such as network slice Service Level Agreement (SLA) compliance, spectrum usage efficiency and fairness among customer classes. On a real use case from Ericsson, the throughput levels for individual services are shown to be optimized with accurate PRB partitioning.","PeriodicalId":125799,"journal":{"name":"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MUESLI: Multi-objective Radio Resource Slice Management via Reinforcement Learning\",\"authors\":\"A. Kattepur, S. David, S. Mohalik\",\"doi\":\"10.1109/NetSoft54395.2022.9844041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"5G Radio Access Network (RAN) slicing concerns strategies to share radio resources while guaranteeing differentiated service requirements. Current state of the art approaches make use of strict isolation or dedicated RAN physical resource block (PRB) partitioning among slices to ensure differentiated services. However, spectrum multiplexing may be rendered suboptimal due to isolation of resources; it further cannot handle variations in traffic patterns or intents in a dynamic way. In this paper, we propose a flexible multi-service partitioning strategy that can balance functional isolation and optimal sharing of resources. This system, called Muesli: Multi-objective Radio Resource Slice Management, makes use of model-based reinforcement learning techniques to dynamically modify PRB partitions. The reinforcement learning reward structure ensures that the system is trained to meet multiple objectives such as network slice Service Level Agreement (SLA) compliance, spectrum usage efficiency and fairness among customer classes. On a real use case from Ericsson, the throughput levels for individual services are shown to be optimized with accurate PRB partitioning.\",\"PeriodicalId\":125799,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NetSoft54395.2022.9844041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft54395.2022.9844041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

5G无线接入网(RAN)切片关注的是在保证差异化业务需求的同时实现无线资源共享的策略。当前最先进的方法在片之间使用严格的隔离或专用RAN物理资源块(PRB)分区来确保差异化的服务。然而,由于资源的隔离,频谱复用可能呈现为次优;它还不能以动态的方式处理流量模式或意图的变化。本文提出了一种灵活的多服务分区策略,可以平衡功能隔离和资源最优共享。这个系统被称为Muesli:多目标无线电资源切片管理,利用基于模型的强化学习技术来动态修改PRB分区。强化学习奖励结构确保系统被训练以满足多个目标,如网络切片服务水平协议(SLA)合规性,频谱使用效率和客户类别之间的公平性。在爱立信的一个实际用例中,单个服务的吞吐量水平通过精确的PRB分区得到了优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MUESLI: Multi-objective Radio Resource Slice Management via Reinforcement Learning
5G Radio Access Network (RAN) slicing concerns strategies to share radio resources while guaranteeing differentiated service requirements. Current state of the art approaches make use of strict isolation or dedicated RAN physical resource block (PRB) partitioning among slices to ensure differentiated services. However, spectrum multiplexing may be rendered suboptimal due to isolation of resources; it further cannot handle variations in traffic patterns or intents in a dynamic way. In this paper, we propose a flexible multi-service partitioning strategy that can balance functional isolation and optimal sharing of resources. This system, called Muesli: Multi-objective Radio Resource Slice Management, makes use of model-based reinforcement learning techniques to dynamically modify PRB partitions. The reinforcement learning reward structure ensures that the system is trained to meet multiple objectives such as network slice Service Level Agreement (SLA) compliance, spectrum usage efficiency and fairness among customer classes. On a real use case from Ericsson, the throughput levels for individual services are shown to be optimized with accurate PRB partitioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信