投影映射的刚性与解析函数的增长。

Mitsuru Ozawa
{"title":"投影映射的刚性与解析函数的增长。","authors":"Mitsuru Ozawa","doi":"10.2996/KMJ/1138844858","DOIUrl":null,"url":null,"abstract":"for a single-valued meromorphic function F(w) in the punctured disc <70< log |M;|<OO satisfying the condition TP(σ, F)=o(e ). This fact says that f(p) preserves the projection map F0: W— >2B*, that is, f(Pι)=f(Pz) if Fo(p1)=F0(p2)t when f(p) satisfies the desired growth condition. Such a phenomenon was studied non-systematically by the various authors. Excepting the closed surface case, the first one who explained the phenomenon is Selberg [5]. However his ramification theorem in his celebrated theory [4], that is,","PeriodicalId":318148,"journal":{"name":"Kodai Mathematical Seminar Reports","volume":"12 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1964-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Rigidity of projection map and the growth of analytic functions.\",\"authors\":\"Mitsuru Ozawa\",\"doi\":\"10.2996/KMJ/1138844858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"for a single-valued meromorphic function F(w) in the punctured disc <70< log |M;|<OO satisfying the condition TP(σ, F)=o(e ). This fact says that f(p) preserves the projection map F0: W— >2B*, that is, f(Pι)=f(Pz) if Fo(p1)=F0(p2)t when f(p) satisfies the desired growth condition. Such a phenomenon was studied non-systematically by the various authors. Excepting the closed surface case, the first one who explained the phenomenon is Selberg [5]. However his ramification theorem in his celebrated theory [4], that is,\",\"PeriodicalId\":318148,\"journal\":{\"name\":\"Kodai Mathematical Seminar Reports\",\"volume\":\"12 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1964-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Seminar Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2996/KMJ/1138844858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Seminar Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2996/KMJ/1138844858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于穿孔圆盘2B*中的单值亚纯函数F(w),即当F(p)满足所需的生长条件时,如果Fo(p1)=F0(p2)t,则F(Pι)= F(Pz)。不同的作者对这种现象进行了非系统的研究。除了闭面情况外,最早解释这一现象的是Selberg[5]。然而在他著名的理论[4]中,他的分支定理,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity of projection map and the growth of analytic functions.
for a single-valued meromorphic function F(w) in the punctured disc <70< log |M;|2B*, that is, f(Pι)=f(Pz) if Fo(p1)=F0(p2)t when f(p) satisfies the desired growth condition. Such a phenomenon was studied non-systematically by the various authors. Excepting the closed surface case, the first one who explained the phenomenon is Selberg [5]. However his ramification theorem in his celebrated theory [4], that is,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信