中红外应用中硫系玻璃低损耗波导的直接飞秒激光写入

D. Le Coq, J. Carcreff, P. Masselin
{"title":"中红外应用中硫系玻璃低损耗波导的直接飞秒激光写入","authors":"D. Le Coq, J. Carcreff, P. Masselin","doi":"10.1117/12.2541175","DOIUrl":null,"url":null,"abstract":"Direct femtosecond laser writing technique is now widely used in particular in glass, to produce both passive and active photonic devices. This technique offers a real scientific opportunity to generate three-dimensional optical components. The chalcogenide glasses are of great interest since they possess a transparency window from the visible up to the midinfrared range. Moreover, they also have high optical non-linearity and high photosensitivity that facilitate the inscription of permanent refractive index modification. In this presentation, an original method based on both the filamentation phenomenon and a point-by-point technique will be described. The written waveguide is of multicore type and consists in parallel channels of positive ▵n placed parallel to each other on a hexagonal or a circular mesh. The performances in terms of optical losses at both 1.55 μm and 4.55 μm measured in such photowritten buried infrared waveguide are very competitive. This writing technique is particularly suitable for the design of single mode waveguide for wavelengths ranging from the visible up to the mid-infrared since the geometry of the inscription and the amplitude of the refractive index modification can be easily adapted. This also paves the way for the fabrication of advanced mid-infrared optical components such as Y-splitters.","PeriodicalId":131350,"journal":{"name":"Micro + Nano Materials, Devices, and Applications","volume":"11 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct femtosecond laser writing of low-loss waveguides in chalcogenide glasses for mid-infrared applications\",\"authors\":\"D. Le Coq, J. Carcreff, P. Masselin\",\"doi\":\"10.1117/12.2541175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct femtosecond laser writing technique is now widely used in particular in glass, to produce both passive and active photonic devices. This technique offers a real scientific opportunity to generate three-dimensional optical components. The chalcogenide glasses are of great interest since they possess a transparency window from the visible up to the midinfrared range. Moreover, they also have high optical non-linearity and high photosensitivity that facilitate the inscription of permanent refractive index modification. In this presentation, an original method based on both the filamentation phenomenon and a point-by-point technique will be described. The written waveguide is of multicore type and consists in parallel channels of positive ▵n placed parallel to each other on a hexagonal or a circular mesh. The performances in terms of optical losses at both 1.55 μm and 4.55 μm measured in such photowritten buried infrared waveguide are very competitive. This writing technique is particularly suitable for the design of single mode waveguide for wavelengths ranging from the visible up to the mid-infrared since the geometry of the inscription and the amplitude of the refractive index modification can be easily adapted. This also paves the way for the fabrication of advanced mid-infrared optical components such as Y-splitters.\",\"PeriodicalId\":131350,\"journal\":{\"name\":\"Micro + Nano Materials, Devices, and Applications\",\"volume\":\"11 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro + Nano Materials, Devices, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2541175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro + Nano Materials, Devices, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2541175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

飞秒直接激光书写技术目前已广泛应用于生产无源和有源光子器件,特别是在玻璃中。这项技术为生成三维光学元件提供了一个真正的科学机会。硫系玻璃是非常有趣的,因为它们具有从可见光到中红外范围的透明窗口。此外,它们还具有高光学非线性和高光敏性,便于永久性折射率修饰的铭文。在本报告中,将介绍一种基于成丝现象和逐点技术的原始方法。该写入波导为多核型,由平行的正数为±n的通道组成,彼此平行放置于六边形或圆形网格上。光写入埋地红外波导在1.55 μm和4.55 μm处的光损耗都具有很强的竞争力。这种书写技术特别适用于设计从可见光到中红外波长范围的单模波导,因为铭文的几何形状和折射率修改的幅度可以很容易地适应。这也为制造先进的中红外光学元件(如y型分光器)铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct femtosecond laser writing of low-loss waveguides in chalcogenide glasses for mid-infrared applications
Direct femtosecond laser writing technique is now widely used in particular in glass, to produce both passive and active photonic devices. This technique offers a real scientific opportunity to generate three-dimensional optical components. The chalcogenide glasses are of great interest since they possess a transparency window from the visible up to the midinfrared range. Moreover, they also have high optical non-linearity and high photosensitivity that facilitate the inscription of permanent refractive index modification. In this presentation, an original method based on both the filamentation phenomenon and a point-by-point technique will be described. The written waveguide is of multicore type and consists in parallel channels of positive ▵n placed parallel to each other on a hexagonal or a circular mesh. The performances in terms of optical losses at both 1.55 μm and 4.55 μm measured in such photowritten buried infrared waveguide are very competitive. This writing technique is particularly suitable for the design of single mode waveguide for wavelengths ranging from the visible up to the mid-infrared since the geometry of the inscription and the amplitude of the refractive index modification can be easily adapted. This also paves the way for the fabrication of advanced mid-infrared optical components such as Y-splitters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信