{"title":"激光雷达制导机载高光谱数据分析","authors":"K. Niemann, G. Frazer, R. Loos, F. Visintini","doi":"10.1109/WHISPERS.2009.5289029","DOIUrl":null,"url":null,"abstract":"This paper describes a new framework to the collection and fusion of multisensor airborne LiDAR and hyperspectral data. We describe a data fusion philosophy that provides a spatially precise positioning of hyperspectral data based on discrete first and last return LiDAR data. Three dimensional objects defined by the LiDAR data are then used to sample optimal spectra for subsequent analysis. The sampled spectra retain their positioning metadata and so can be mapped back into geographic space for further analysis. While the paper presents this philosophy within the context of a species classification, other analytical analysis can be performed.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"LiDAR-guided analysis of airborne hyperspectral data\",\"authors\":\"K. Niemann, G. Frazer, R. Loos, F. Visintini\",\"doi\":\"10.1109/WHISPERS.2009.5289029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new framework to the collection and fusion of multisensor airborne LiDAR and hyperspectral data. We describe a data fusion philosophy that provides a spatially precise positioning of hyperspectral data based on discrete first and last return LiDAR data. Three dimensional objects defined by the LiDAR data are then used to sample optimal spectra for subsequent analysis. The sampled spectra retain their positioning metadata and so can be mapped back into geographic space for further analysis. While the paper presents this philosophy within the context of a species classification, other analytical analysis can be performed.\",\"PeriodicalId\":242447,\"journal\":{\"name\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2009.5289029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LiDAR-guided analysis of airborne hyperspectral data
This paper describes a new framework to the collection and fusion of multisensor airborne LiDAR and hyperspectral data. We describe a data fusion philosophy that provides a spatially precise positioning of hyperspectral data based on discrete first and last return LiDAR data. Three dimensional objects defined by the LiDAR data are then used to sample optimal spectra for subsequent analysis. The sampled spectra retain their positioning metadata and so can be mapped back into geographic space for further analysis. While the paper presents this philosophy within the context of a species classification, other analytical analysis can be performed.