基础计算思维教学与评估:学习轨迹视角

Feiya Luo, Maya Israel, Brian D. Gane
{"title":"基础计算思维教学与评估:学习轨迹视角","authors":"Feiya Luo, Maya Israel, Brian D. Gane","doi":"10.1145/3494579","DOIUrl":null,"url":null,"abstract":"There is little empirical research related to how elementary students develop computational thinking (CT) and how they apply CT in problem-solving. To address this gap in knowledge, this study made use of learning trajectories (LTs; hypothesized learning goals, progressions, and activities) in CT concept areas such as sequence, repetition, conditionals, and decomposition to better understand students’ CT. This study implemented eight math-CT integrated lessons aligned to U.S. national mathematics education standards and the LTs with third- and fourth-grade students. This basic interpretive qualitative study aimed at gaining a deeper understanding of elementary students’ CT by having students express and articulate their CT in cognitive interviews. Participants’ (n = 22) CT articulation was examined using a priori codes translated verbatim from the learning goals in the LTs and was mapped to the learning goals in the LTs. Results revealed a range of students’ CT in problem-solving, such as using precise and complete problem-solving instructions, recognizing repeating patterns, and decomposing arithmetic problems. By collecting empirical data on how students expressed and articulated their CT, this study makes theoretical contributions by generating initial empirical evidence to support the hypothesized learning goals and progressions in the LTs. This article also discusses the implications for integrated CT instruction and assessments at the elementary level.","PeriodicalId":352564,"journal":{"name":"ACM Transactions on Computing Education (TOCE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Elementary Computational Thinking Instruction and Assessment: A Learning Trajectory Perspective\",\"authors\":\"Feiya Luo, Maya Israel, Brian D. Gane\",\"doi\":\"10.1145/3494579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is little empirical research related to how elementary students develop computational thinking (CT) and how they apply CT in problem-solving. To address this gap in knowledge, this study made use of learning trajectories (LTs; hypothesized learning goals, progressions, and activities) in CT concept areas such as sequence, repetition, conditionals, and decomposition to better understand students’ CT. This study implemented eight math-CT integrated lessons aligned to U.S. national mathematics education standards and the LTs with third- and fourth-grade students. This basic interpretive qualitative study aimed at gaining a deeper understanding of elementary students’ CT by having students express and articulate their CT in cognitive interviews. Participants’ (n = 22) CT articulation was examined using a priori codes translated verbatim from the learning goals in the LTs and was mapped to the learning goals in the LTs. Results revealed a range of students’ CT in problem-solving, such as using precise and complete problem-solving instructions, recognizing repeating patterns, and decomposing arithmetic problems. By collecting empirical data on how students expressed and articulated their CT, this study makes theoretical contributions by generating initial empirical evidence to support the hypothesized learning goals and progressions in the LTs. This article also discusses the implications for integrated CT instruction and assessments at the elementary level.\",\"PeriodicalId\":352564,\"journal\":{\"name\":\"ACM Transactions on Computing Education (TOCE)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computing Education (TOCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3494579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computing Education (TOCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3494579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

关于小学生如何发展计算思维(CT)以及他们如何应用CT解决问题的实证研究很少。为了解决这一知识差距,本研究利用了学习轨迹(LTs;假设的学习目标、进度和活动)在CT概念领域,如顺序、重复、条件和分解,以更好地了解学生的CT。本研究针对三年级和四年级学生实施了八门与美国国家数学教育标准相一致的数学- ct综合课程和LTs。本基础解释性质的研究旨在通过让小学生在认知访谈中表达和表达他们的CT,从而对小学生的CT有更深入的了解。参与者(n = 22)的CT发音使用从ltt中的学习目标逐字翻译的先验代码进行检查,并映射到ltt中的学习目标。结果显示了学生在解决问题方面的一系列CT,如使用精确和完整的解决问题的指令,识别重复模式,分解算术题。通过收集关于学生如何表达和表达他们的CT的经验数据,本研究通过产生初步的经验证据来支持假设的学习目标和LTs的进展,从而做出理论贡献。本文还讨论了在初级阶段进行综合CT教学和评估的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elementary Computational Thinking Instruction and Assessment: A Learning Trajectory Perspective
There is little empirical research related to how elementary students develop computational thinking (CT) and how they apply CT in problem-solving. To address this gap in knowledge, this study made use of learning trajectories (LTs; hypothesized learning goals, progressions, and activities) in CT concept areas such as sequence, repetition, conditionals, and decomposition to better understand students’ CT. This study implemented eight math-CT integrated lessons aligned to U.S. national mathematics education standards and the LTs with third- and fourth-grade students. This basic interpretive qualitative study aimed at gaining a deeper understanding of elementary students’ CT by having students express and articulate their CT in cognitive interviews. Participants’ (n = 22) CT articulation was examined using a priori codes translated verbatim from the learning goals in the LTs and was mapped to the learning goals in the LTs. Results revealed a range of students’ CT in problem-solving, such as using precise and complete problem-solving instructions, recognizing repeating patterns, and decomposing arithmetic problems. By collecting empirical data on how students expressed and articulated their CT, this study makes theoretical contributions by generating initial empirical evidence to support the hypothesized learning goals and progressions in the LTs. This article also discusses the implications for integrated CT instruction and assessments at the elementary level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信